Home
Class 12
MATHS
Let f:[0,2]->R be a function which is c...

Let `f:[0,2]->R` be a function which is continuous on [0,2] and is differentiable on (0,2) with `f(0)=1` `L e t :F(x)=int_0^(x^2)f(sqrt(t))dtforx in [0,2]dotIfF^(prime)(x)=f^(prime)(x)` . for all `x in (0,2),` then `F(2)` equals (a)`e^2-1` (b) `e^4-1` (c)`e-1` (d) `e^4`

Promotional Banner

Similar Questions

Explore conceptually related problems

if f be a differentiable function such that f(x) =x^(2)int_(0)^(x)e^(-t)f(x-t). dt. Then f(x) =

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let f is a differentiable function such that f'(x)=f(x)+int_(0)^(2)f(x)dx,f(0)=(4-e^(2))/(3) find f(x)

Suppose for a differentiable function f,f(0)=0,f(1)=1 and f(0)=4=f'(1) If g(x)=f(e^(x))*e^(f(x)) then g'(0) is

Let f(x) be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then int_(0)^(1)f(x)dx=

f(x)=int_0^x e^t f(t)dt+e^x , f(x) is a differentiable function on x in R then f(x)=

If f(x) is differentiable function and f(x)=x^(2)+int_(0)^(x) e^(-t) (x-t)dt ,then f)-t) equals to

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=