Home
Class 12
MATHS
If f(x)={e^cosx sinx for |x| leq 2) an...

If `f(x)={e^cosx sinx` for `|x| leq 2`) and 2, other wise, Then `int_-2^3 f(x)dx=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={(e^(cosx)sinx, |x|le2),(2, otherwise):} then int_-2^3f(x)dx= (A) 0 (B) 1 (C) 2 (D) 3

If int_(-2)^(0) f (x) dx =k, then int_(-2)^(0) |f(x)|dx is

Prove that int_-2^2 f(x^4)dx=2int_0^2 f(x^4)dx

Let f(x)=e^(x)+2x+1 then find the value of int_(2)^(e+3)f^(-1)(x)dx

Statement I int_0 ^ (npi + t) | sinx | dx = (2n + 1) -cost, (0 leq t leq pi) Statement II int_a ^ bf (x) dx = int_a ^ ef (x) dx + int_e ^ bf (x) dxint_0 ^ (na) f (x) dx = nint_0 ^ af (x) dx "if" f (a + x) = f (x)

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=

If f(x) = (e^(x)-e^(sinx))/(2(x sinx)) , x != 0 is continuous at x = 0, then f(0) =

f(0)=1 , f(2)=e^2 , f'(x)=f'(2-x) , then find the value of int_0^(2)f(x)dx