Home
Class 12
MATHS
L e tI1=int(pi/6)^(pi/3)(sinx)/x dx ,I2=...

`L e tI_1=int_(pi/6)^(pi/3)(sinx)/x dx ,I_2=int_(pi/6)^(pi/3)("sin"(sinx)/(sinx)dx ,I_3=int_(pi/6)^(pi/3)(sin(tanx)/(tanx)dx` Then arrange in the decreasing order in which values `I_1,I_2,I_3` lie.

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(pi/6)^( pi/3)sin(3x)dx

int_(pi/3)^(pi/2) sinx dx

int_(pi//6)^(pi//3) sin(3x)dx=

int_(pi//4)^(3pi//4)(xsinx)/(1+sinx)dx

int_(pi//6)^(pi//3)(1)/(1+tan x) dx=

int_(pi)^(2pi)|sinx|dx=?

I_(1)=int_(0)^((pi)/2)In (sinx)dx, I_(2)=int_(-pi//4)^(pi//4)In(sinx+cosx)dx . Then

int_(-pi/2)^(pi/2)(1+sin^2x)/(1+pi^(sinx))dx=

int_(0)^((14pi)/3) |sinx|dx