Home
Class 12
MATHS
If vecA, vecB, vecC are non-coplanar vec...

If `vecA, vecB, vecC` are non-coplanar vectors then `(vecA.vecBxxvecC)/(vecCxxvecA.vecB)+(vecB.vecAxxvecC)/(vecC.vecAxxvecB)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Assertion : If vecA, vecB,vecC are any three non coplanar vectors then (vecA.vecBxxvecC)/(vecCxxvecA.vecB)+(vecB.vecAxxvecc)/(vecC.vecAxxvecB)=0 , Reason: [veca vecb vecc]!=[vecb vecc veca] (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.vecBxxvecC)/(vecCxxvecA.vecB)+(vecB.vecAxxvecC)/(vecC.vecA xx vecB) =_________

If vecA,vecB,vecC are non-coplanar vectors than ( vecA . vecB xx vecC )/(vecCxxvecA.vecB)+(vecB. vecA xx vecC)/( vecC. vecA xx vecB) is equal to

If vecA,vecB,vecC are non-coplanar vectors than ( vecA . vecB xx vecC )/(vecCxxvecA.vecB)+(vecB. vecA xx vecC)/( vecC. vecA xx vecB) is equal to

Assertion : If vecA, vecB,vecC are any three non coplanar vectors then (vecA.(vecBxxvecC))/((vecCxxvecA).vecB)+(vecB.(vecAxxvecc))/(vecC.(vecAxxvecB))=0 , Reason: [veca vecb vecc]!=[vecb vecc veca] (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxvecb)xx(vecaxxvecc)+(vecbxxvecc)xx(vecbxxveca)+veccxxveca)xx(vecxxvecb) is equal to

If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxvecb)xx(vecaxxvecc)+(vecbxxvecc)xx(vecbxxveca)+(veccxxveca)xx(veccxxvecb) is equal to

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)