Answer
Step by step text solution for The value of lim_(x -> oo) (sqrt(x^2+x+1) - sqrt(x^2-x+1) equal to by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.
|
Similar Questions
Explore conceptually related problems
Knowledge Check
Similar Questions
Explore conceptually related problems
Recommended Questions
- The value of lim(x -> oo) (sqrt(x^2+x+1) - sqrt(x^2-x+1) equal to
04:31
|
Playing Now - lim(x rarr-oo)(x^(2)*sin((1)/(x)))/(sqrt(9x^(2)+x+1)) is equal to
03:29
|
Play - lim(x->oo)x^3sqrt(x^2+sqrt(1+x^4))-xsqrt2
04:48
|
Play - lim(x rarr oo)x^(3)sqrt(x^(2)+sqrt(1+x^(4)))-x sqrt(2)
04:48
|
Play - If a > 1, then the value of Lim(x->oo) (a^sqrtx-a^sqrt(1/x))/(a^sqrtx...
02:20
|
Play - Show that lim(x rarr oo)(sqrt(x^(2)+x+1)-x)!=lim(x rarr oo)(sqrt(x^(2)...
03:57
|
Play - lim(x->oo) {sqrt(x^4-x^2+1)-ax^2-a}=A finite value. Then a is equal to...
03:40
|
Play - lim(x rarr oo x rarr oo)(sqrt(a^(2)x^(2)+ax+1)-sqrt(a^(2)x^(2)+1))=k l...
05:52
|
Play - lim (x rarr-oo) [sqrt (x ^ (2) + x + 1) -x]
02:11
|
Play