Home
Class 12
MATHS
int0^pi(xtanx)/(secxcosec x)=(pi^2)/4...

`int_0^pi(xtanx)/(secxcosec x)=(pi^2)/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : int_0^pi (xtanx)/(secxcosecx)dx =pi^2/4 .

int_0^pi(xtanx)/(secx+cosx)dxi s (pi^2)/4 (b) (pi^2)/2 (c) (3pi^2)/2 (d) (pi^2)/3

int_0^pi(xtanx)/(secx+cosx)dx is (pi^2)/4 (b) (pi^2)/2 (c) (3pi^2)/2 (d) (pi^2)/3

int_0^pi(xtanx)/(secx+cosx)dxi s (pi^2)/4 (b) (pi^2)/2 (c) (3pi^2)/2 (d) (pi^2)/3

int_(0)^(pi)(xtanx)/(secx+cosx)dx=

Evaluate the following: int_0^pi (xtanx)/(secxcosecx)dx

Using properties of definite integrals, prove the following : int_o^pi(xtanx)/(secx\ cos e c\ x)\ dx=(pi^2)/4

int_(0)^(pi)(x tanx)/((secxcosecx))dx=(pi^(2))/(4)

int_0^pi (xtanx)/(secx+tanx)dx

Prove that following: underset(0)overset(pi)int(xtanx)/(secx+cosx)dx = (pi^2)/(4)