Home
Class 12
MATHS
Let f(x) be a continuous and differenti...

Let `f(x)` be a continuous and differentiable function such that `f(x)=int_0^xsin(t^2-t+x)dt` Then prove that `f^('')(x)+f(x)=cosx^2+2xsinx^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then prove that f(x)=(x^(3))/(3)+x^(2)

if f be a differentiable function such that f(x) =x^(2)int_(0)^(x)e^(-t)f(x-t). dt. Then f(x) =

Let f(x) be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then int_(0)^(1)f(x)dx=

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If f(x) is differentiable function and f(x)=x^(2)+int_(0)^(x) e^(-t) (x-t)dt ,then f)-t) equals to