Home
Class 12
MATHS
Show that int0^(npi+v)|sinx|dx=2n+1-cosv...

Show that `int_0^(npi+v)|sinx|dx=2n+1-cosv ,` where `n` is a positive integer and ,`0<=vltpi`

Text Solution

Verified by Experts

Let `I=int_(0)^(npi+v)|sinx|dx`
`=int_(0)^(v)|sinx|dx+int_(v)^(npi+v)|sinx|dx`
`=int_(0)^(v)sinx dx+n int_(0)^(pi) |sinx+dx` [ `:'|sinx|` has period `pi`]
`=(-cosx)_(0)^(v)+n(-cosx)_(0)^(pi)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(a//2) sin 2n x cot x dx, where n is a positive integer, is

n|sin x|=m|cos|in[0,2 pi] where n>m and are positive integers

Statement-1: int_(0)^(npi+v)|sin x|dx=2n+1-cos v where n in N and 0 le v lt pi . Stetement-2: If f(x) is a periodic function with period T, then (i) int_(0)^(nT) f(x)dx=n int_(0)^(T) f(x)dx , where n in N and (ii) int_(nT)^(nt+a) f(x)dx=int_(0)^(a) f(x) dx , where n in N

Consider the integral I_(m) = int_(0)^(pi) (sin2mx)/(sinx ) dx , where m is a positive integer. What is I_(1) equal to ?

Consider the integral I_(m) = int_(0)^(pi) (sin2mx)/(sinx ) dx , where m is a positive integer. What is I_(m) equal to ?

Show that 9^(n+1)-8n-9 is divisible by 64, where n is a positive integer.

If U_(n)=int_(0)^( pi)(1-cos nx)/(1-cos x)dx, where n is positive integer or zero,then show that U_(n+2)+U_(n)=2U_(n+1). Hence,deduce that int_(0)^((pi)/(2))(sin^(2)n theta)/(sin^(2)theta)=(1)/(2)n pi

Evaluate int_(0)^(1)(tx+1-x)^(n)dx , where n is a positive integer and t is a parameter independent of x . Hence , show that

Prove that 2^(n)>1+n sqrt(2^(n-1)),AA n>2 where n is a positive integer.