Home
Class 12
MATHS
If I=int e^(-x) log(e^x+1) dx, then equa...

If `I=int e^(-x) log(e^x+1) dx,` then equal

Promotional Banner

Similar Questions

Explore conceptually related problems

inte^(-x)log(e^x+1)dx

If I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l a+(e^(-x)+1)log(e^x+1)+C a+(e^x+1)log(e^x+1)+C a-(e^(-x)+1)log(e^x+1)+C none of these

"If " I=int e^(-x)log(e^(x)+1)dx, " then " I " equals "

int e^(x log a) e^(x)dx=

int e^(x log a).e^(x) dx =

int e^(x) (e^(log x)+1) dx

int e^(x log a) e^(x) dx is equal to

int e^(x log a ) e^(x) dx is equal to :

int e^x (log x + 1/x)dx is equal to :