Home
Class 12
MATHS
Let a+b=4,w h e r ea<2,a n dl e tg(x) be...

Let `a+b=4,w h e r ea<2,a n dl e tg(x)` be a differentiable function. If `(dg)/(dx)>0` for all `x ,` prove that `int_0^ag(x)dx+int_0^bg(x)dxin c r e r a s e sa s(b-a)in c r e r a s e sdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int_0^1 e^-x/(1+e^x)dx

Evaluate: int_0^1 (dx)/(e^x+e^(-x))

int_0^a e^(x-[x])dx=10e-9 then find a

The value of int_0^(pi//2)cosx\ e^(s in x)dx\ i s 1 b. e-1 c. 0 d. -1

Derivative e^(x) cos x w.r.t. e^(x) sin x , " at" x=0 is

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

Evaluate: int_0^pi(xtanx)/(s e c x+tanx)dx

prove it 2e^(-(1)/(4))

The value of the integral int_-a^a (x e^(x^2))/(1+x^2)dx is (A) e^(a^2) (B) 0 (C) e^(-a^2) (D) a