Home
Class 12
MATHS
If Un=int0^pi(1-cosnx)/(1-cosx)dx , wher...

If `U_n=int_0^pi(1-cosnx)/(1-cosx)dx ,` where `n` is positive integer or zero, then show that `U_(n+2)+U_n=2U_(n+1)dot` Hence, deduce that `int_0^(pi/2)(sin^2ntheta)/(sin^2theta)=1/2npidot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: int_(0)^(2 pi)(x sin^(2n)x)/(sin^(2n)+cos^(2n)x)dx=pi^(2)

Show that int_(0)^(n pi+v)|sin x|dx=2n+1-cos v, where n is a positive integer and ,0<=v

int_(-pi//2)^(pi//2)(sin^(2n-1)x)/(1+cos^(2n)x)dx=

The value of I(n)=int_(0)^( pi)(sin^(2)n theta)/(sin^(2)theta)d theta is (AA n in N)

If U_n=int_0^(pi/2)(sin^2n x)/(sin^2x)dx, then show that U_1,U_2,U_3.......U_n constitute an AP. Hence or otherwise find the value of U_n.

If n is a positive integer, prove that: int_0^(2pi) (cos(n-1)x-cosnx)/(1-cosx)dx=2pi , hence or otherwise, show that int_0^(2pi) (sin((nx)/2)/sin(x/2))^2dx=2npi .

If n is a positive integer and u_(n)=int x^(n)sqrt(a^(2)-x^(2))dx

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :