Home
Class 14
MATHS
If 3^(x-y)=27, and 3^(x+y) = 243, then x...

If `3^(x-y)=27,` and `3^(x+y) = 243`, then `x` is equal to a. `0` b. `2` c. `4` d. `6`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 3^(x-y) =27 and 3^(x+y) = 243 , then what is the value of x?

If x - 27 " and " y = "log"_(3) 4, "then" x^(y) equals

If x = 27 " and " y = "log"_(3) 4, "then" x^(y) equals

If ( x - 1 )^3 + ( y - 2 )^3 + ( z - 3 )^3 = 3 ( x - 1 ) ( y - 2 ) ( z - 3 ) and x - 1 != y -2 != z-3 , then x + y + z is equal to : ( A ) 2 ( B ) -6 ( C ) 6 ( D ) 4

If [(2x+y,0),(5,x)] = [(5,0),(5,3)] then y is equal to (a) 1 (b) 3 (c) 2 (d) -1

If 2x+3y+z=0 , then (8x^(3)+27y^(3)+z^(3))-:xyz is equal to

If 8x^3-27y^3=(Ax+By)(Cx^2-Dy^2+ 6xy) , then (A + B + C- D) is equal to:

Length of the tangents from the point (1,2) to the circles x^(2)+y^(2)+x+y-4=0 and 3x^(2)+3y^(2)-x-y-k=0 are in the ratio 4:3 , then k is equal to a) (37)/(2) b) (4)/(37) c)21 d) (39)/(4)

If 3^(2x-y)=3^(x+y)=sqrt(27), the value of y is a.(1)/(2) b.(3)/(4) c.(1)/(4) d.(3)/(2)