Home
Class 12
MATHS
If S=[0 1 1 1 0 1 1 1 0]a n dA=[b+cc+a b...

If `S=[0 1 1 1 0 1 1 1 0]a n dA=[b+cc+a b-cc-b c+b a-bb-c a-c a+b](a ,b ,c!=0),t h e nS A S^(-1)` is a. symmetric matrix b. diagonal matrix c. invertible matrix d. singular matrix

Promotional Banner

Similar Questions

Explore conceptually related problems

If A and B are symmetric matrices,then ABA is (a) symmetric matric b) skew-symmetric matrix (c) diagonal matrix (d) scalar matrix

If A and B are matrices of the same order, then AB^(T)-B^(T)A is a a ( a) skew-symmetric matrix (b) null matrix (c) unit matrix (d) symmetric matrix

Which of the following is a symmetric matrix? (A) a null matrix (B) a triangular matrix (C) an idenity matrix (D) a diagonal matrix

The matrix [(0, 5,-7),(-5, 0, 11),( 7,-11, 0)] is (a) a skew-symmetric matrix (b) a symmetric matrix (c) a diagonal matrix (d) an upper triangular matrix

If A is a square matrix,then AA is a (a) skew- symmetric matrix (b) symmetric matrix (c) diagonal matrix (d) none of these

If matrix A=[(a,b),(c,d)] , then |A|^(-1) is equal to

The matrix A = [(1, 2),( 0,1)] is (a) a Unit matrix (b) a diagonal matrix (c) a scalar matrix (d) None of these

The matrix A = [(1, 2),( 0,1)] is (a) a Unit matrix (b) a diagonal matrix (c) a scalar matrix (d) None of these

If A is an invertible symmetric matrix the A^-1 is A. a diagonal matrix B. symmetric C. skew symmetric D. none of these

The matrix A=[(1, 0, 0),( 0, 2, 0),( 0, 0, 4)] is (a) identity matrix (b) symmetric matrix (c) skew-symmetric matrix (d) diagonal matrix