Home
Class 12
MATHS
Let A=[1 2 2 2 1 2 2 2 1] . Then A^2-4A...

Let `A=[1 2 2 2 1 2 2 2 1]` . Then `A^2-4A-5I_3=O` b. `A^(-1)=1/5(A-4I_3)` c. `A^3` is not invertible d. `A^2` is invertible

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1,2,2),(2,1,2),(2,2,1)] then (A) A^-1= 1/5(A-4I_3) (B) A^2-4A-5I_3=0 (C) A^2 is invertible (D) A^3 is non invertible

Let A=[[2,3],[-1,2]] .Then A^(2)-4A+7I =

Let A=[[4,2],[-1,1]] .Then (A-2I)(A-3I) is equal to

If A=[(1, 2, 0 ),(3,-4, 5),( 0,-1, 3)] , compute A^2-4A+3I_3 .

If A=|{:(1,2,2),(2,1,2),(2,2,1):}| , then show that A^(2)-4A-5I_(3)=0 . Hemce find A^(-1) .

If [(1,a,2),(1,2,5),(2,1,1)] is non invertible then a= (A) 2 (B) 1 (C) 0 (D) -1

" 2.Let "A=[[1,0,2],[2,0,1],[1,1,2]]," then "(det((A-I)^(3)-4A))/(5)" is "

"If A" = [{:(1, 2), (1, 3):}] , then find A^(-1) + A . (a) I (b) 2I (c) 3I (d) 4I

The matrix [[1, a, 2], [1, 2, 5], [2, 1, 1]] is not invertible, if a=

If A = ({:( 1,2,3),( 2,1,2),( 2,2,1) :}) and A^(2) -4A -5l =O where I and O are the unit matrix and the null matrix order 3 respectively if , 15A^(-1) =lambda |{:( -3,2,3),(2,-3,2),(2,2,-3):}| then the find the value of lambda