Home
Class 12
MATHS
If A B=Aa n dB A=B , then a. A^2B=A^2 ...

If `A B=Aa n dB A=B ,` then a. `A^2B=A^2` b. `B^2A=B^2` c. `A B A=A` d. `B A B=B`

Promotional Banner

Similar Questions

Explore conceptually related problems

If B is an idempotent matrix,and A=I-B then a.A^(2)=A b.A^(2)=I c.AB=O d.BA=O

If A B=A ,B A=B then (A+B)^n= (where n in N) (A^2+B^2) (2) (A+B) A+B (4) 2^(n-1)(A+B) 2^n(A+B)

If A nn B=B, then A sube B b.B sube A c.A=varphi d.B=varphi

If AB=A and BA=B, where A and B are square matrices,then B^(2)=B and A^(2)=A (b) B^(2)!=B and A^(2)=A( c) A^(2)!=A,B^(2)=B (d) A^(2)!=A,B^(2)!=B

The A D ,B Ea n dC F are the medians of a c A B C , then (A D^2+B E^2+C F^2):(B C^2+C A^2+A B^2) is equal to

In figure, ABC is a triangle in which /_A B C=90^@ and A D_|_B C . Prove that A C^2=A B^2+B C^2-2B C.B D .

If A and B are square matrices of the same order such that AB=BA, then (A) (A-B)(A+B)=A^2-B^2 (B) (A+B)^2=A^2+2AB+B^2 (C) (A+B)^3=A^3A^2B+3AB^2+B^3 (D) (AB)^2=A^2B^2

In a triangle A B C , right angled at B , the inradius is (A B+B C-A C)/2 (b) (A B+A C-B C)/2 (A B+B C+A C)/2 (d) none

A B D is a right triangle right-angled at A and A C_|_B D . Show that A B^2=B CdotB D (ii) A C^2=B CdotD C (iii) A D^2=B DdotC D (iv) (A B^2)/(A C^2)=(B D)/(D C)