Home
Class 12
MATHS
Prove that ((a+b)/2)^(a+b) ge a^(b) .b^(...

Prove that `((a+b)/2)^(a+b) ge a^(b) .b^(a)[ a, b in N] `

Text Solution

Verified by Experts

The correct Answer is:
` :. (a+b)/2 ge (2ab)/(a+b) ge (a^(b)b^(a))^(1(a+b))rArr((a+b)/2)^(a+b)gea^(b).b^(a)`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION & SERIES

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|11 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|25 Videos
  • PROBABILITY

    FIITJEE|Exercise Exercise 7|2 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If a and b are positive, use mathematical induction to prove that ((a+b)/(2))^(n) le (a^(n)+b^(n))/(2) AA n in N

Prove that [(a^(2) + b^(2))/(a + b)]^(a + b) gt a^(a) b^(b) gt {(a + b)/(2)}^(a + b) , where a,b gt 0

Prove that [(a^(2)+b^(2))/(a+b)]^(a+b)>a^(a)b^(b)>{(a+b)/(2)}^(a+b)

If a and b are distinct integers then prove that (a-b) is a factor of (a^(n)-b^(n)) , whenever n is a positive integar.

If a + b =1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a and b are distinct integers,prove that a^(n)-b^(n) is divisible by (a-b) where n in N

If a and b are distinct integers,prove that a-b is a factor of a^(n)-b^(n), wherever n is a positive integer.

If a>b>0, with the aid of Lagranges mean value theorem,prove that nb^(n-1)(a-b) 1nb^(n-1)(a-b)>a^(n)-b^(n)>na^(n-1)(a-b),quad if 0

If |vec a|=a and |vec b|=b then prove that ((vec a)/(a^(2))-(vec b)/(b^(2)))=((vec a-vec b)/(ab))^(2)

If a,b,c,d are in G.P.prove that (a^(n)+b^(n)),(b^(n)+c^(n)),(c^(n)+a^(n)) are in G.P.