Home
Class 12
MATHS
Show that a^(2)(1+b^(2))+b^(2)(1+c^(2))+...

Show that `a^(2)(1+b^(2))+b^(2)(1+c^(2))+c^(2)(1+a^(2))gt abc`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • PROGRESSION & SERIES

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-I|11 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-I (Fill in the blanks )|5 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise EXERCISE 5|3 Videos
  • PROBABILITY

    FIITJEE|Exercise Exercise 7|2 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are real and distinct,then show that a^(2)(1+b^(2))+b^(2)(1+c^(2))+c^(2)(1+a^(2))>6abc

If /_\ ABC is right angled at A, show that: (b^(2) + c^(2))/(b^(2) - c^(2)) .sin (B - C)=1 .

det[[ Prove that :,c^(2)a^(2),b^(2),c^(2)(a+1)^(2),(b+1)^(2),(c+1)^(2)(a-1)^(2),(b-1)^(2),[c-1)^(2)]]=4det[[a^(2),b^(2),c^(2)a,b,c1,1,1]]

show that [[(a^(2)+b^(2))/(c),c,ca,(b^(2)+c^(2))/(a),ab,b,(a^(2)+b^(2))/(c)]]=4abc

Show that b^(2)c^(2)+c^(2)a^(2)+a^(2)b^(2)>abc(a+b+c), where a,b,c are different positivine integers.

If |[a, b, c], [a^(2), b^(2), c^(2)], [a^(3)+1, b^(3)+1, c^(2)+1]|=0 and the vectors given by A(1, a, a^(2)), B(1, b, b^(2)), C(1, c, c^(2)) are non-collinear, then abc=

If a, b, c are three distinct positive real numbers, then the least value of ((1+a+a^(2))(1+b+b^(2))(1+c+c^(2)))/(abc) , is

If |{:( a , a ^(2), 1+ a ^(3)), ( b , b^(2), 1+ b ^(3)), ( c ,c ^(2), 1 + c ^(3)):}|=0 and vectors (1, a,a ^(2)), (1, b, b ^(2)) and (1, c, c^(2)) are non-coplanar, then the value of abc +1 is