Home
Class 12
MATHS
Find the maximum value of (3-x)^(5)(2...

Find the maximum value of `(3-x)^(5)(2+x)^(4)` when x lies between `-2` and 3 .

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( f(x) = (3-x)^5 (2+x)^4 \) for \( x \) in the interval \([-2, 3]\), we can follow these steps: ### Step 1: Define the function We start with the function: \[ f(x) = (3-x)^5 (2+x)^4 \] ### Step 2: Find the critical points To find the critical points, we need to differentiate the function and set the derivative equal to zero. We will use the product rule for differentiation. Let: \[ u = (3-x)^5 \quad \text{and} \quad v = (2+x)^4 \] Then, the derivative \( f'(x) \) using the product rule is: \[ f'(x) = u'v + uv' \] Calculating \( u' \) and \( v' \): \[ u' = -5(3-x)^4 \quad \text{and} \quad v' = 4(2+x)^3 \] Thus, we have: \[ f'(x) = -5(3-x)^4(2+x)^4 + (3-x)^5 \cdot 4(2+x)^3 \] ### Step 3: Set the derivative to zero Setting \( f'(x) = 0 \): \[ -5(3-x)^4(2+x)^4 + 4(3-x)^5(2+x)^3 = 0 \] Factoring out common terms: \[ (3-x)^4(2+x)^3 \left( -5(2+x) + 4(3-x) \right) = 0 \] This gives us two cases: 1. \( (3-x)^4 = 0 \) which gives \( x = 3 \) 2. \( (2+x)^3 = 0 \) which gives \( x = -2 \) 3. Solve \( -5(2+x) + 4(3-x) = 0 \): \[ -5(2+x) + 12 - 4x = 0 \implies -5x + 12 - 10 = 0 \implies -5x + 2 = 0 \implies x = \frac{2}{5} \] ### Step 4: Evaluate the function at critical points and endpoints Now we evaluate \( f(x) \) at the critical points \( x = -2, \frac{2}{5}, 3 \): 1. \( f(-2) = (3 - (-2))^5 (2 + (-2))^4 = 5^5 \cdot 0^4 = 0 \) 2. \( f(3) = (3 - 3)^5 (2 + 3)^4 = 0^5 \cdot 5^4 = 0 \) 3. \( f\left(\frac{2}{5}\right) = \left(3 - \frac{2}{5}\right)^5 \left(2 + \frac{2}{5}\right)^4 = \left(\frac{13}{5}\right)^5 \left(\frac{12}{5}\right)^4 \) Calculating \( f\left(\frac{2}{5}\right) \): \[ f\left(\frac{2}{5}\right) = \frac{13^5}{5^5} \cdot \frac{12^4}{5^4} = \frac{13^5 \cdot 12^4}{5^9} \] ### Step 5: Compare values The maximum value of \( f(x) \) occurs at \( x = \frac{2}{5} \): \[ \text{Maximum value} = \frac{13^5 \cdot 12^4}{5^9} \] ### Final Result Thus, the maximum value of \( f(x) \) in the interval \([-2, 3]\) is: \[ \frac{13^5 \cdot 12^4}{5^9} \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION & SERIES

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-I (Fill in the blanks )|5 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-II|17 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise EXERCISE 6|4 Videos
  • PROBABILITY

    FIITJEE|Exercise Exercise 7|2 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Find the maximum value of (7-x)^(4)(2+x)^(5) when x lies between -2 and 7.

Maximum value of -5x^(2)+2x+3 is

" If (1)/(|2x+5|)>(1)/(3) then x lies between

Find the maximum value of the function (x-1)(x-2)(x-3)

Find the value of p(x)=2x^(2)-3x+5 when x=2

Find the value of x -2(1)/(3)+4(3)/(5) = x

Find the maximum value of the function 1//(x^(2)-3x+2) .

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

Find the range of the values of x for which x^(2)-4x+2 lies between +1 and -1 .