Home
Class 12
MATHS
Find the value of 2551 S where S = sum(...

Find the value of 2551 S where `S = sum_(k=1)^(50) k/(k^(4)+k^(2)+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( 2551 S \) where \( S = \sum_{k=1}^{50} \frac{k}{k^4 + k^2 + 1} \), we can follow these steps: ### Step 1: Simplify the Denominator We start with the expression for \( S \): \[ S = \sum_{k=1}^{50} \frac{k}{k^4 + k^2 + 1} \] Notice that \( k^4 + k^2 + 1 \) can be factored or rewritten. We can express it as: \[ k^4 + k^2 + 1 = (k^2 + 1)^2 - k^2 = (k^2 + 1 - k)(k^2 + 1 + k) \] This means: \[ k^4 + k^2 + 1 = (k^2 - k + 1)(k^2 + k + 1) \] ### Step 2: Rewrite the Fraction Now we can rewrite the fraction: \[ \frac{k}{k^4 + k^2 + 1} = \frac{k}{(k^2 - k + 1)(k^2 + k + 1)} \] ### Step 3: Partial Fraction Decomposition Next, we can use partial fraction decomposition: \[ \frac{k}{(k^2 - k + 1)(k^2 + k + 1)} = \frac{A}{k^2 - k + 1} + \frac{B}{k^2 + k + 1} \] Multiplying through by the denominator: \[ k = A(k^2 + k + 1) + B(k^2 - k + 1) \] Expanding and combining like terms gives: \[ k = (A + B)k^2 + (A - B)k + (A + B) \] Setting coefficients equal, we get the system: 1. \( A + B = 0 \) 2. \( A - B = 1 \) 3. \( A + B = 0 \) From \( A + B = 0 \), we have \( B = -A \). Substituting into the second equation: \[ A - (-A) = 1 \implies 2A = 1 \implies A = \frac{1}{2}, B = -\frac{1}{2} \] Thus, we rewrite the fraction: \[ \frac{k}{(k^2 - k + 1)(k^2 + k + 1)} = \frac{1/2}{k^2 - k + 1} - \frac{1/2}{k^2 + k + 1} \] ### Step 4: Substitute Back into the Sum Now substituting back into \( S \): \[ S = \sum_{k=1}^{50} \left( \frac{1/2}{k^2 - k + 1} - \frac{1/2}{k^2 + k + 1} \right) \] This can be simplified to: \[ S = \frac{1}{2} \left( \sum_{k=1}^{50} \frac{1}{k^2 - k + 1} - \sum_{k=1}^{50} \frac{1}{k^2 + k + 1} \right) \] ### Step 5: Evaluate the Sums Notice that the terms in the sums will telescope: \[ S = \frac{1}{2} \left( \frac{1}{1} - \frac{1}{51} \right) \] This results in: \[ S = \frac{1}{2} \left( 1 - \frac{1}{51} \right) = \frac{1}{2} \cdot \frac{50}{51} = \frac{25}{51} \] ### Step 6: Calculate \( 2551 S \) Now we calculate: \[ 2551 S = 2551 \cdot \frac{25}{51} = \frac{2551 \cdot 25}{51} \] Calculating this gives: \[ 2551 \div 51 = 50 \quad \text{(since } 51 \times 50 = 2550\text{)} \] Thus: \[ 2551 S = 50 \cdot 25 = 1225 \] ### Final Answer Therefore, the value of \( 2551 S \) is: \[ \boxed{1225} \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION & SERIES

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I|50 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-I (Fill in the blanks )|5 Videos
  • PROBABILITY

    FIITJEE|Exercise Exercise 7|2 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

The sum sum_(k=1)^(100)(k)/(k^(4)+k^(2)+1) is equal to

Find the value of the sum_(k=0)^(359)k.cos k^(@)

If the value of the sum n^(2) + n - sum_(k = 1)^(n) (2k^(3)+ 8k^(2) + 6k - 1)/(k^(2) + 4k + 3) as n tends to infinity can be expressed in the form (p)/(q) find the least value of (p + q) where p, q in N

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

Evaluate :sum_(k=1)^(10)(3+2^(k))

Let S_(k) , where k = 1,2 ,....,100, denotes the sum of the infinite geometric series whose first term is (k -1)/(k!) and the common ratio is (1)/(k) . Then, the value of (100^(2))/(100!) +sum_(k=2)^(100) | (k^(2) - 3k +1) S_(k)| is....

Find the sum of the series sum_(k=1)^(360)((1)/(k sqrt(k+1)+(k+1)sqrt(k)))

FIITJEE-PROGRESSION & SERIES -ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-II
  1. The series of natural numbers is divided into groups (1),(2,3,4) : ...

    Text Solution

    |

  2. Find the value of 2551 S where S = sum(k=1)^(50) k/(k^(4)+k^(2)+1)

    Text Solution

    |

  3. If an=3/4-(3/4)^2+(3/4)^3+...(-1)^(n-1)(3/4)^n and bn=1-an, then find ...

    Text Solution

    |

  4. If S=a+b+c then prove that (S)/(S-a)+(S)/(S-b)+(S)/(S-c) gt (9)/(2) wh...

    Text Solution

    |

  5. Sum to n terms of the series 1+(1+x)+(1+x+x^2)+(1+x+x^2+x^3)+...

    Text Solution

    |

  6. (1^4)/1.3+(2^4)/3.5+(3^4)/5.7+......+n^4/((2n-1)(2n+1))=(n(4n^2+6n+5))...

    Text Solution

    |

  7. The sum of the infinite series (1)/(3)+(3)/(3.7)+(5)/(3.7.11)+(7)/(3...

    Text Solution

    |

  8. Find the minimum value of (a+1/a)^(2) +(b+1/b)^(2) where a gt 0, b g...

    Text Solution

    |

  9. If m is negative or positive and greater than 1 , show that 1^(m)+...

    Text Solution

    |

  10. Let a,b,c be three distinct positive real numbers in G.P , then pr...

    Text Solution

    |

  11. The nth term of a series is given by t(n)=(n^(5)+n^(3))/(n^(4)+n^(2)+1...

    Text Solution

    |

  12. If sum(r=1)^n tr=n/8(n+1)(n+2)(n+3), then find sum(r=1)^n1/(tr)dot

    Text Solution

    |

  13. If the terms of A.P. sqrt(a-x),sqrt(x),sqrt(a+x) ……….. Are all integer...

    Text Solution

    |

  14. If the terms of the A.P. sqrt(a-x),sqrt(x),sqrt(a+x) are all in intege...

    Text Solution

    |

  15. Prove that (666 …. "to n digits")^(2) +(888 …. To n digits ) = (444 … ...

    Text Solution

    |

  16. Find the sum of the infinitely decreasing G.P. whose third term, three...

    Text Solution

    |

  17. If the equations ax^(2) +2bx +c = 0 and Ax^(2) +2Bx+C=0 have a commo...

    Text Solution

    |