Home
Class 12
MATHS
If x(1),x(2),….x(20) are in H.P then x(1...

If `x_(1),x_(2),….x_(20)` are in H.P then `x_(1)x_(2)+x_(2)x_(3)+….+x_(19)x_(20)`=

A

`x_(1)x_(20)`

B

`19 x_(1),x_(20)`

C

`20x_(1),x_(20)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( x_1 x_2 + x_2 x_3 + \ldots + x_{19} x_{20} \) given that \( x_1, x_2, \ldots, x_{20} \) are in Harmonic Progression (H.P). ### Step-by-Step Solution: 1. **Understanding Harmonic Progression**: If \( x_1, x_2, \ldots, x_{20} \) are in H.P, then their reciprocals \( \frac{1}{x_1}, \frac{1}{x_2}, \ldots, \frac{1}{x_{20}} \) are in Arithmetic Progression (A.P). 2. **Setting up the A.P**: Let the first term of the A.P be \( a = \frac{1}{x_1} \) and the common difference be \( d \). Then, we can express the terms as: \[ \frac{1}{x_n} = a + (n-1)d \quad \text{for } n = 1, 2, \ldots, 20 \] This gives us: \[ \frac{1}{x_n} = \frac{1}{x_1} + (n-1)d \] Rearranging gives: \[ x_n = \frac{1}{a + (n-1)d} \] 3. **Finding the Expression**: We need to evaluate: \[ S = x_1 x_2 + x_2 x_3 + \ldots + x_{19} x_{20} \] This can be rewritten using the terms of H.P: \[ S = x_n x_{n+1} = \frac{1}{\frac{1}{x_1} + (n-1)d} \cdot \frac{1}{\frac{1}{x_1} + nd} \] 4. **Using the Formula**: The product of two consecutive terms in H.P can be expressed as: \[ x_n x_{n+1} = \frac{1}{\left(\frac{1}{x_1} + (n-1)d\right)\left(\frac{1}{x_1} + nd\right)} \] The sum \( S \) can be simplified using the properties of A.P and H.P. 5. **Final Calculation**: The sum \( S \) can be computed as: \[ S = \frac{20}{d^2} \] where \( d \) is the common difference of the A.P formed by the reciprocals. 6. **Result**: Thus, the value of \( x_1 x_2 + x_2 x_3 + \ldots + x_{19} x_{20} \) is: \[ S = \frac{20}{d^2} \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION & SERIES

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise COMPREHENSIONS -I|3 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-II|17 Videos
  • PROBABILITY

    FIITJEE|Exercise Exercise 7|2 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If x_(1),x_(2),...x_(2018) are in H.P.,x_(1)x_(2)+x_(2)x_(3)+......+x_(2017)x_(2018)=lambda and x_(1)x_(2018)=mu then the value of ((lambda)/(mu)) is equal to

If x_(1),x_(2),x_(3)...x_(n) are in H.P,then prove that x_(1)x_(2)+x_(2)x_(3)+xx x-3x_(4)+...+x_(n-1)x_(n)=(n-1)x_(1)x_(n)

If x_(1), x_(2), x_(3) .................x_(n) are in H.P.then x_(1)x_(2)+x_(2)x_(3)+.......+x_(n-1)x_(n) =

If x_(1),x_(2),...x_(20) are in H.P.and x_(1),2,x_(20) are in G.P.then sum_(r=1)^(19)x_(r)x_(r+1)=76b.80c.84d none of these

Let x_(1),x_(2),…..,x_(n) be is an AP . If x_(1)+x_(4)+x_(9)+x_(11)+x_(20)+x_(22)+x_(27)+x_(30)= 272 , then x_(1)+x_(2)+x_(3)+…+x_(30) is equal to

If x_(1),x_(2),x_(3),"……" are in A.P., then the value of 1/(x_(1)x_(2))+1/(x_(2)x_(3))+1/(x_(3)x_(4))+"……"1/(x_(n-1)x_(n)) is :

If x_1,x_2,x_3….,x_n are in H.P. prove that x_1x_2+x_2x_3+x_3x_4+……….+x_(n-1)x_n=(n-1)x_1x_n

If x_(1),x_(2),x_(3) are the roots of x^(3)+ax^(2)+b=0, the value of x_(2)x_(3),x_(1)x_(3),x_(1),x_(2)]|

FIITJEE-PROGRESSION & SERIES -ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. The sequence a1,a2,a3,a4..... satisfies a1 =1, a2 =2 and a(n+2) = 2/a(...

    Text Solution

    |

  2. If (a^n+b^n)/(a^(n-1)+b^(n-1))is the A.M. between a and b, then find t...

    Text Solution

    |

  3. If x(1),x(2),….x(20) are in H.P then x(1)x(2)+x(2)x(3)+….+x(19)x(20)=

    Text Solution

    |

  4. If a,b,c are three positive real numbers then the minimum value of the...

    Text Solution

    |

  5. If a ,b ,c are different positive real numbers such that b+c-a ,c+a-b ...

    Text Solution

    |

  6. n/((n+1)!)+((n+1))/((n+2)!)+......+((n+p))/((n+p+1)!) is equal to .

    Text Solution

    |

  7. The sum of two numbers is (13)/6dot An even number of arithmetic means...

    Text Solution

    |

  8. The first term of an infinite G.p is 1 and any term is equal to th...

    Text Solution

    |

  9. If a(1) = 2 and a(n) - a(n-1) = 2n (n ge 2), find the value of a(1) + ...

    Text Solution

    |

  10. If first and (2n-1)^th terms of an AP, GP. and HP. are equal and the...

    Text Solution

    |

  11. If xi>0 i=1,2,3,...50 x1+x2...+x50=50 then the minimum value of 1/(x1)...

    Text Solution

    |

  12. If H1. H2...., Hn are n harmonic means between a and b(!=a), then the ...

    Text Solution

    |

  13. The largest interval for which the series 1+(x-1)+(x-1)^(2)+….oo may ...

    Text Solution

    |

  14. If 1/(1^2)+1/(2^2)+1/(3^2)+ tooo=(pi^2)/6,t h e n1/(1^2)+1/(3^2)+1/(5^...

    Text Solution

    |

  15. Let Tr a n dSr be the rth term and sum up to rth term of a series, res...

    Text Solution

    |

  16. Let a1,a2,a3... be in A.P. and ap,aq,ar be in G.P. then value of aq/ap...

    Text Solution

    |

  17. If H(1),H(2),H(3),…..H(2n+1) are in H.P then sum(i=1)^(2n)(-1)^(j)((H(...

    Text Solution

    |

  18. If the sequences 1,2,2,4,4,4,4,8,8,8,8,8,8,8,8….. where n consecutive ...

    Text Solution

    |

  19. If S(r)= sum(r=1)^(n)T(1)=n(n+1)(n+2)(n+3) then sum(r=1)^(10) 1/(T(r))...

    Text Solution

    |

  20. a,b,c,d,e are five numbers in which the first three are in A.P and th...

    Text Solution

    |