Home
Class 12
MATHS
Let a and b be two positive unequal numb...

Let a and b be two positive unequal numbers , then `(a^(n+1)+b^(n+1))/(a^(n)+b^(n))` represents

A

their A.M if n = 0

B

their G.M if `n = 1/2 `

C

their H.M if `n=-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given: \[ \frac{a^{n+1} + b^{n+1}}{a^n + b^n} \] where \( a \) and \( b \) are two positive unequal numbers. ### Step 1: Substitute values for \( n \) Let's evaluate the expression for specific values of \( n \). 1. **For \( n = 0 \)**: \[ \frac{a^{0+1} + b^{0+1}}{a^0 + b^0} = \frac{a^1 + b^1}{a^0 + b^0} = \frac{a + b}{1 + 1} = \frac{a + b}{2} \] This represents the **Arithmetic Mean (AM)** of \( a \) and \( b \). ### Step 2: Check for \( n = 1 \) 2. **For \( n = 1 \)**: \[ \frac{a^{1+1} + b^{1+1}}{a^1 + b^1} = \frac{a^2 + b^2}{a + b} \] This does not represent a standard mean directly but can be simplified further. ### Step 3: Check for \( n = -1 \) 3. **For \( n = -1 \)**: \[ \frac{a^{-1+1} + b^{-1+1}}{a^{-1} + b^{-1}} = \frac{a^0 + b^0}{\frac{1}{a} + \frac{1}{b}} = \frac{1 + 1}{\frac{b + a}{ab}} = \frac{2}{\frac{a + b}{ab}} = \frac{2ab}{a + b} \] This represents the **Harmonic Mean (HM)** of \( a \) and \( b \). ### Conclusion From the evaluations, we find: - For \( n = 0 \), the expression represents the Arithmetic Mean of \( a \) and \( b \). - For \( n = -1 \), the expression represents the Harmonic Mean of \( a \) and \( b \). Thus, the expression \( \frac{a^{n+1} + b^{n+1}}{a^n + b^n} \) can represent both the Arithmetic Mean and the Harmonic Mean depending on the value of \( n \). ### Final Answer The expression represents: - Arithmetic Mean when \( n = 0 \) - Harmonic Mean when \( n = -1 \)
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION & SERIES

    FIITJEE|Exercise COMPREHENSIONS -I|3 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise COMPREHENSIONS -II|2 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I|50 Videos
  • PROBABILITY

    FIITJEE|Exercise Exercise 7|2 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If a and b are positive natural numbers a^((1)/(n))xx b^((1)/(n))=(ab)^((1)/(n))

Statement-1: If a, b are positive real numbers such that a^(3)+b^(3)=16 , then a+ble4. Statement-2: If a, b are positive real numbers and ngt1 , then (a^(n)+b^(n))/(2)ge((a+b)/(2))^(n)

lim_(n rarr oo)(a^(n)+b^(n))/(a^(n)-b^(n)), where a

If a>b and n is a positive integer,then prove that a^(n)-b^(n)>n(ab)^((n-1)/2)(a-b)

If G_(1) is the first of n G.M. s between positive numbers a and b , then show that G_(1)^(n+1) = a^(n) b .

Find n, so that (a^(n+1)+b^(n+1))/(a^(n)+b^(n))(a ne b ) be HM beween a and b.

If a,b and n are natural numbers then a^(2n-1)+b^(2n-1) is divisible by

FIITJEE-PROGRESSION & SERIES -ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II
  1. In a G.P. the product of the first four terms is 4 and the second ter...

    Text Solution

    |

  2. if (m+1)th, (n+1)th and (r+1)th term of an AP are in GP.and m, n and r...

    Text Solution

    |

  3. If three unequal positive real numbers a, b, c are in G.P. and b-c, c-...

    Text Solution

    |

  4. For any three unequal numbers a,b and c (a-b)/(b-c) equals to

    Text Solution

    |

  5. The numbers 1, 4, 16 can be three terms (not necessarily consecutive) ...

    Text Solution

    |

  6. Let a and b be two positive unequal numbers , then (a^(n+1)+b^(n+1))/(...

    Text Solution

    |

  7. Let a1, a2, a3, ,an be in G.P. such that 3a1+7a2+3a3-4a5=0. Then comm...

    Text Solution

    |

  8. If x,y,z are positive numbers in A.P., then

    Text Solution

    |

  9. The sequences {x(n)} is defined by x(k+1)=x(k)^(2)+x(k) and x(1) =1/...

    Text Solution

    |

  10. If a,b,c are in G.P and a,p,q are in A.P such that 2a, b+p, c +q are...

    Text Solution

    |

  11. If a,b,c three unequal positive quantities in H.P .then

    Text Solution

    |

  12. If underset(k=1)overset(n)sum(underset(m=1)overset(k)summ^(2))=an^(4)+...

    Text Solution

    |

  13. For a positive integer n , let a(n) = 1+ 1/2 + 1/3 +…+ 1/(2^(n)-1) ...

    Text Solution

    |

  14. Let x(1),x(2),x(3) bet the roots of equation x^(3) - x^(2) +betax + ga...

    Text Solution

    |

  15. The value of sum(r=1)^n1/(sqrt(a+r x)+sqrt(a+(r-1)x)) is -

    Text Solution

    |

  16. Let S1, S2, be squares such that for each ngeq1, the length of a side...

    Text Solution

    |

  17. If a, b, c, d are distinct integers in A. P. Such that d=a^2+b^2+c^2, ...

    Text Solution

    |

  18. If a,b,c, are in A.P., b,c,d are in G.P. and c,d,e, are in H.P., then ...

    Text Solution

    |

  19. if the equation x^(4)-4x^(3)+ax^(2)+bx+1=0 has four positive roots, th...

    Text Solution

    |

  20. If a,b,and c are three terms of an A.P such that a != b then (b-c)/...

    Text Solution

    |