Home
Class 12
MATHS
Let f: Rveca n dg: RvecR be continuous f...

Let `f: Rveca n dg: RvecR` be continuous function. Then the value of the integral `int_(-pi/2)^(pi/2)[f(x)+f(-x)][g(x)-g(-x)]dxi s` `pi` (b) 1 (c) `-1` (d) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R and g:R rarr R be continuous functions.Then the value of the integral int_((pi)/(2))^((pi)/(2))[f(x)+f(-x)][g(x)-g(-x)]dx is

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

Let y=f(x) be a quadratic function with f'(2)=1. Find the value of the integral int_(2-pi)^(2+pi)f(x)*sin((x-2)/(2))dx

The value of the integral int_(0)^(1)sqrt((1-x)/(1+x))dxis (a) (pi)/(2)+1( b) (pi)/(2)-1(c)-1(d)1

If f(x)=x+sin x, then find the value of int_(pi)^(2 pi)f^(-1)(x)dx

If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0) then the value of the integral int_(-pi//4)^(pi//4)g(f(x)) dx is

If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, then the value of int_(0)^(pi//2) {f(2x)-f''(2x)}sin x cos x dx is equal to

If f and g are continuous functions on [0,pi] satisfying f(x)+f(pi-x)=g(x)+g(pi-x)=1 then int_(0)^( pi)[f(x)+g(x)]backslash dx is equal to