Home
Class 14
MATHS
Prove that : sin (y + z-x) + sin (z + x...

Prove that :
`sin (y + z-x) + sin (z + x-y) + sin (x +y-z)-sin (x+y+z)` =`4 sin x sin y sin z`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that, sin x.sin y.sin (xy) + sin y * sin z * sin (yz) + sin z * sin x * sin (zx) + sin (xy) * sin (yz) * sin (zx) = 0

Prove that sin x* sin y*sin(x - y) + sin y *sin z*sin(y- z) + sin z *sin x sin(z - x) + sin(x - y) *sin(y - z)*sin(z -x) = 0 .

What is the value of [sin (y – z) + sin (y + z) + 2 sin y]/[sin (x – z) + sin (x + z) + 2 sin x]?

What is the value of [sin (y- z) +sin (y + z) + 2 sin y]//[sin (x-z) +sin (x + z) + 2 sin x] ? [sin (y- z) +sin (y + z) + 2 sin y]//[sin (x-z) +sin (x + z) + 2 sin x] का मान क्या है?

Prove that : (sin (x+y))/(sin (x-y) )= (sin x. cos y + cos x . Sin y)/(sin x. cos y-cos x. sin y)

If x + y = pi + z, then prove that sin ^ (2) x + sin ^ (2) y-sin ^ (2) z = 2sin x sin y cos z

sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = (pi) / (2)

Show that sin (x-y) + sin (y-z) + sin (z-x) + 4sin((x-y)/(2)) sin( (y-z)/(2)) sin((z-x)/(2)) =0