Home
Class 12
MATHS
inta^b |1-x|/(1-x) dx=...

`int_a^b |1-x|/(1-x) dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(b)(|1-x|dx)/(1-x) is equal to

Prove that int_0^1log(x/(1-x))dx=int_0^1log((1-x)/x)dx . Find the value of int_0^1log(x/(1-x))dx

Statement - 1 : The value of the integral int_(pi/6)^(pi/3) dx/(1 + sqrttanx) is equal to pi/6 Statement-2 : int_a^b f(x) = int_a^b f(a + b - x) dx

Show that : int_0^1(logx)/((1+x))dx=-int_0^1(log(1+x))/x dx

Show that : int_0^1(logx)/((1+x))dx=-int_0^1(log(1+x))/x dx

Show that : int_0^1(logx)/((1+x))dx=-int_0^1(log(1+x))/x dx

Show that : int_0^1(logx)/((1+x))dx=-int_0^1(log(1+x))/x dx

STATEMENT 1: int_0^pixsinxcos^2xdx=pi/2int_0^pisinxcos^2x dx . STATEMENT 2: int_a^b xf(x)dx=(a+b)/2int_a^bf(x)dx .

STATEMENT 1: int_0^pixsinxcos^2xdx=pi/2int_0^pisinxcos^2x dx . STATEMENT 2: int_a^b xf(x)dx=(a+b)/2int_a^bf(x)dx .

If | int_a ^b f(x) dx| = int_a ^b |f(x)| dx, a lt b , then f(x) = 0 has