Home
Class 12
MATHS
If Sn=[1/(1+sqrt(n))+1/(2+sqrt(2n))+.......

If `S_n=[1/(1+sqrt(n))+1/(2+sqrt(2n))+....+1/(n+sqrt(n^2))]` then `(lim)_(n ->oo)S_n` is equal to (A) `log 2` (B) `log4` (C) `log8` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nto oo)1/n+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+...(1)/(sqrt(n^(2)+(n-1)n)) is equal to

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(n rarr4)(sqrt(2n+1)-3)/(sqrt(n-1)-sqrt(2))

If quad S_(n)=(1)/(2n)+(1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-4))+...+(1)/(sqrt(3n_(2)^(2)+2n-1)),n in N then lim_(n rarr oo)S_(n) is equal to (pi)/(2)(b)2(c)1(d)(pi)/(6),n in N

lim_(n rarr oo)(1)/(n^(3))(sqrt(n^(2)+1)+2sqrt(n^(2)+2^(2))+...+n sqrt(n^(2)+n^(2))) is equal to

lim_(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4n-3))) is equal to:

lim_(n rarr oo)(sqrt(n^(2)+n)-sqrt(n^2+1))