Home
Class 12
MATHS
The value of ("lim")(nvecoo)sum(r=1)^(4n...

The value of `("lim")_(nvecoo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2)` is equal to `1/(35)` (b) `1/4` (c) `1/(10)` (d) `1/5`

A

`1/35`

B

`1/14`

C

`1/10`

D

`1/5`

Text Solution

AI Generated Solution

To solve the limit \[ \lim_{n \to \infty} \sum_{r=1}^{4n} \frac{\sqrt{n}}{\sqrt{r}(3\sqrt{r} + \sqrt{n})^2} \] we will follow these steps: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) sum_ (n = 1) ^ (n) (sqrt (n)) / (sqrt (r) (3sqrt (r) + 4sqrt (n)) ^ (2))

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of sum_(k=2)^(oo){Lt_(n rarr oo)sum_(r=1)^(n)((sqrt(n))/(sqrt(r)(k sqrt(n)-sqrt(r))^(2))}]}

The value of lim_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(n^(2)-r^(2)x^(2))) is

m sum_(r=1)^(n)(1)/(n)sqrt((n+r)/(n-r))

The value of lim_(xrarroo)(sqrt(n^2+1)+sqrt(n))/(4sqrt(n^4+n)+4sqrt(n)) , is

The value of lim_(n rarr oo)sum_(r=n^(2))^(n^(2)+9+6n)(1)/(sqrt(r)) is equal to

The value of sum_(r=1)^(n)(1)/(sqrt(a+rx)+sqrt(a+(r-1)x)) is -

The value of lim_(n rarr oo)sum_(r=1)^(n)(sum_(t=0)^(r-1)(1)/(5^(n))*C(n,r)C(r,t)3^(t)) is equal to

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to