Home
Class 12
MATHS
Let F(alpha)=[cosalpha-s inalpha0s inalp...

Let `F(alpha)=[cosalpha-s inalpha0s inalphacosalpha0 0 0 1],w h e r ealpha in Rdot` Then `(F(alpha))^(-1)` is equal to `F(alpha^(-1))` b. `F(-alpha^)` c. `F(2alpha)` d. `-[1 1 1 0]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , where alphainR , then (F(alpha))^(-1)=

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

Let F(alpha)=[cos alpha-sin alpha0sin alpha cos alpha0001] and G(beta)=[cos beta0sin beta010-sin beta0cos beta] Show that [F(alpha)]^(-1)=F(-alpha)(ii)[G(beta)]^(-1)=G(-beta)( iii) [F(alpha)G(beta)]^(-1)=G(-beta)F(-alpha)

If F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] and G(beta)=[(cosbeta, 0, sinbeta),(0, 1, 0),(-sinbeta, 0, cosbeta)], then [F(alpha)G(beta)]^-1 is equal to (A) F(-alpha)G(-beta) (B) G(-beta)F(-alpha0 (C) F(alpha^-1)G(beta^-1) (D) G(beta^-1)F(alpha^-1)

Statement 1: If f(alpha)=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]],t h e n [F(alpha)]^(-1)=F(-alpha)dot Statement 2: For matrix G(beta)=[[cosbeta,0,sinbeta],[0, 1, 0],[-sinbeta,0,cosbeta]]dot we have [G(beta)]^(-1)=G(-beta)dot

Let A(alpha)=[cosalpha0sinalpha0 1 0sinalpha0cosalpha] and X is a set of all matrices A(alpha) for different values of alpha . Which of the following is true (a)A^(-1)(alpha)=A(-alpha) (b) A^(-1)(alpha)=A(alpha) (c)det(a d j(A^(-1)(alpha)))=sec^2 2alpha (d)det(A^(-1)(alpha))=1/(cos2alpha)

If f(alpha)=0 then alpha is called

If f(alpha)=0 then alpha is called