Home
Class 12
MATHS
Let f be a continuous function on [a , b...

Let `f` be a continuous function on `[a , b]dot` If `F(x)=(int_a^xf(t)dt-int_x^bf(t)dt)(2x-(a+b)),` then prove that there exist some `c in (a , b)` such that `int_a^cf(t)dt-int_c^bf(t)dt=f(c)(a+b-2c)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt

Let f be a continuous function on [a,b]. Prove that there exists a number x in[a,b] such that int_(a)^(x)f(t)dx=int_(x)^(b)f(t)dt

Let f be a continous function on [a,b] . Prove that there exists a number x in [a, b] such that int _(a) ^(x) f(t) dt = int_(x) ^(b) f(t) dt .

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f is continuous function and F(x)=int_(0)^(x)((2t+3)*int_(t)^(2)f(u)du)dt, then |(F^(n)(2))/(f(2))| is equal to

If f(x)=int_(0)^(x)tf(t)dt+2, then

A function f(x) satisfies f(x)=sin x+int_(0)^(x)f'(t)(2sin t-sin^(2)t)dt is