Home
Class 12
MATHS
If (sin^(-1)x+sin^(-1)y)(sin^(-1)Z+sin^(...

If `(sin^(-1)x+sin^(-1)y)(sin^(-1)Z+sin^(-1)w)=pi^(2)` and `n_(1),n_(2),n_(3),n_(4)` in N value of `|(x^(n1),y^(n2)),(z^(n)3,w^(n4))|` cannot be equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^(2) , then D=|(x^(N_(1)),y^(N_(2))),(z^(N_(3)),w^(N_(4)))|(N_(1),N_(2),N_(3),N_(4)inN)

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2, then D=|x^(N_1)y^(N_3)z^(N_3)w^(N_4)|(N_1,N_2,N_3,N_4 in N)

If ^( If )(sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^(2) then D=det[[x^(N_(1)),y^(N_(3))z^(N_(3)),y^(N_(3))]](N_(1),N_(2),N_(3),N_(4)in N) has a maximum value of 2 has a maximum value of 016 different D are possible has a minimum value of -2

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2, then D=|x^(N_1)y^(N_3)z^(N_3)w^(N_4)|(N_1,N_2,N_3,N_4 in N) has a maximum value of 2 has a maximum value of 0 16 different D are possible has a minimum value of -2

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2, then D=|x^(N_1)y^(N_3)z^(N_3)w^(N_4)|(N_1,N_2,N_3,N_4 in N) has a maximum value of 2 has a maximum value of 0 16 different D are possible has a minimum value of -2

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2, then D=|x^(N_1)y^(N_3)z^(N_3)w^(N_4)|(N_1,N_2,N_3,N_4 in N) has a maximum value of 2 different D are possible has a minimum value of -2

If x_(n)=cos((pi)/(4^(n)))+i sin ((pi)/(4^(n))) , then x_(1), x_(2), x_(3)....oo is equal to

int(1)/(sqrt(sin^(3)x sin(x+alpha)))dx,alpha!=n pi,n in Z

2 ^ (n-1) sin ((pi) / (n)) sin ((2 pi) / (n)) ..... sin ((n-1) / (n)) pi equals:

If x_(i)>0 for 1<=i<=n and x_(1)+x_(2)+...x_(n)=pi then the greatest value of the sum sin x_(1)+sin x_(2)+....+sin x_(n) is equal to