Home
Class 13
MATHS
" If "a^(4)*b^(5)=1" then the value of "...

" If "a^(4)*b^(5)=1" then the value of "log_(a)(a^(5)b^(4))" equals "

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^4b^5=1 then the value of log_a(a^5b^4) equals

If a^4b^5=1 then the value of log_a(a^5b^4) equals

If a^4b^5=1 then the value of log_a(a^5b^4) equals

If a^4b^5=1 then the value of log_a(a^5b^4) equals

A circle has radius log_(10)(a^(2)) and a circumference of log_(10)(b^(4)) . Then the value of log_(a)b is equal to :

A circle has radius log_(10)(a^(2)) and a circumference of log_(10)(b^(4)) . Then the value of log_(a)b is equal to :

If (a)/(b) = (4)/(5) , then find the value of (4a+5b)/(5b) .

The value of 25^((-1//4log_(5)25)) is equal to

The value of ""_(25)^(-1//4 log_(5)(25)) is: