Home
Class 7
MATHS
(d^(2y))/(dx^(2))=(2a^(3)xy)/((ax-y^(2))...

(d^(2y))/(dx^(2))=(2a^(3)xy)/((ax-y^(2))^(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(3)+y^(3)-3axy=0 then prove that (d^(2)y)/(dx^(2))=(2a^(2)xy)/((ax-y^(2))^(3))

If x^(3)+y^(3)=3ax^(2) , show that, (d^(2)y)/(dx^(2))+(2a^(2)x^(2))/(y^(5))=0 .

Write the order and degree of the differential equation xy((d^(2)y)/(dx^(2)))^(2)+x((dy)/(dx))^(3)-y(dy)/(dx)=0 .

The degree of the differential equation : xy((d^(2)y)/(dx^(2)))^(2)+x^(4)((dy)/(dx))^(3)-y(dy)/(dx)=0 is :

If x^(2)+6xy+y^(2)=10, show that (d^(2)y)/(dx^(2))=(80)/((3x+y)^(3))

If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ^(2)=

If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ^(2)=

Find the order and degree of the following D.E's (i) (d^(2)y)/(dx^(2)) + 2((dy)/(dx))^(2) + 5y = 0 (ii) 2(d^(2)y)/(dx^(2)) = (5+(dy)/(dx))^((5)/(3)) (iii) 1+((d^(2)y)/(dx^(2)))^(2) = [2+((dy)/(dx))^(2)]^((3//2)) (iv) [(d^(2)y)/(dx^(2))+((dy)/(dx))^(3)]^((6/(5)) = 6y (v) [((dy)/(dx))^(2) + (d^(2)y)/(dx^(2))]^((7)/(3)) = (d^(3y))/(dx^(3)) (vi) [((dy)/(dx))^((1)/(2)) + ((d^(2)y)/(dx^(2)))^((1)/(2))]^((1)/(4)) = 0 (vii) (d^(2)y)/(dx^(2)) + p^(2)y = 0 (viii) ((d^(3)y)/(dx^(3)))^(2) -3((dy)/(dx))^(2) - e^(x) = 4

If y=log(1+sinx)," then "(d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))(dy)/(dx)=

y=x^(3)-4x^(2)+5 . Find (dy)/(dx) , (d^(2) y)/(dx^(2)) and (d^(3)y)/(dx^(3)) .