Home
Class 12
MATHS
Let f be a real-valued function satisfyi...

Let `f` be a real-valued function satisfying `f(x)+f(x+4)=f(x+2)+f(x+6)` Prove that `int_x^(x+8)f(t)dt` is constant function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a real valued function satisfying f(x)+f(x+6)=f(x+3)+f(x+9).Then int_x^(x+12)f(t)dt is

Find the period of the real-valued function satisfying f(x)+f(x+4)=f(x+2)+f(x+6).

f(x) is a real valued function, satisfying f(x+y)+f(x-y)=2f(x).f(y) for all yinR , Then

Let f be a real-valued function such that f(x)+2f((2002)/(x))=3x. Then find f(x)

If f is a real valued function not identically zero,satisfying f(x+y)+f(x-y)=2f(x)*f(y) then f(x)

Let f be a real valued function, satisfying f (x+y) =f (x) f (y) for all a,y in R Such that, f (1_ =a. Then , f (x) =

If a real valued function f(x) satisfies the equation f(x+y)=f(x)+f(y) for all x,y in R then f(x) is

f is a real valued function from R to R such that f(x)+f(-x)=2 , then int_(1-x)^(1+X)f^(-1)(t)dt=

Let f be a non - zero real valued continuous function satisfying f(x+y)=f(x)f(y) for x,y in R If f(2)=9 the f(6) =

Let a real valued function f satisfy f(x+y)=f(x)f(y)AA x,y in R and f(0)!=0 Then g(x)=(f(x))/(1+[f(x)]^(2)) is