Home
Class 12
MATHS
Let K be a positive real number and A=[2...

Let `K` be a positive real number and `A=[2k-1 2sqrt(k)2sqrt(k)2sqrt(k)1-2k-2sqrt(k)2k-1]a n dB=[0 2k-1sqrt(k)1-2k0 2-sqrt(k)-2sqrt(k)0]` . If det `(a d jA)+det(a d jB)=10^6,t h e n[k]` is equal to. [Note: `a d jM` denotes the adjoint of a square matix `M` and `[k]` denotes the largest integer less than or equal to `K` ].

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let K be a positive real number and A=[(2k-1, 2sqrtk, 2sqrtk),(2sqrtk, 1,-2k),(-2sqrtk,2k,-1)] and [(0,2k-1, sqrtk),(1-2k, 0,2),(-sqrtk, -2sqrtk,0)] If det (adjA)+det(adjB)= 10^6 , then [k] is equal to

log_sqrt(k) (sqrt(k sqrt(k sqrt(k sqrt(k)))))

Let K=sum_(r=1)^(n)(1)/(r sqrt(r+1)+(r+1)sqrt(r)) and [x] denotes greatest integer function less than or equal to x then [K]

If x_(0) satisfies the equation log_(2)(x^(2)-4x32)=6then[log_(sqrt(3))x_(0)] equats [ Note: [k] denotes greatest integer less than or equal to k.]

sum_(k=1)^(oo)(1)/(k sqrt(k+2)+(k+2)sqrt(k))=(2+sqrt(2))/(a) then

If (6)/(2sqrt(3)-sqrt(5))=(12sqrt(3)+6sqrt(5))/(k), then k=

If log (sqrt(2)+sqrt(3))=cosh^(-1)k then k=

If sum_(k = 1)^(oo) (1)/((k + 2)sqrt(k) + ksqrt(k + 2)) = (sqrt(a) + sqrt(b))/(sqrt(c)) , where a, b, c in N and a,b,c in [1, 15] , then a + b + c is equal to