Home
Class 12
MATHS
" 4."tan^(-1)(log x)...

" 4."tan^(-1)(log x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivatives of the function tan ^(-1) (log x)

Integration of 1/(1+((log)_e x)^2) with respect to (log)_e x is (tan^(-1)((log)_e x)/x)+C (b) tan^(-1)((log)_e x)+C (c) (tan^(-1)x)/x+C (d) none of these

f(x)=tan^(-1){(log((e)/(x^(2))))/(log(ex^(2)))}+tan^(-1)((3+2log x)/(1-6log x)) then find (d^(n)y)/(dx^(n))

If y=tan ^(-1) ((log (ex))/( log ((e)/( x)))) ,then (dy)/(dx) =

e^(tan^(-1)x)log(tan x)

If f(x)=tan^(-1)[(log((e )/(x^(2))))/(log (ex^(2)))]+tan^(-1)[(3+2 log x)/(1-6 log x)] then the value of f''(x) is

Integration of (1)/(1+((log)_(e)x)^(2)) with respect to (log)_(e)x is ((tan^(-1)((log)_(e)x))/(x)+C(b)tan^(-1)((log)_(e)x)+C(c)(tan^(-1)x)/(x)+C(d) none of these

Prove that (d)/(dx){2x tan^(-1)x-log (1+x^(2))}=2 tan^(-1)x.