Home
Class 12
MATHS
int 1/ (x^2 + a^2) dx = 1/a tan^-1 (x/a)...

`int 1/ (x^2 + a^2) dx = 1/a tan^-1 (x/a) + c`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove int(1)/(a^2+x^2)dx = 1/a tan^-1(x/a) +C

If int (1)/( 2 + sin^(2) x ) dx = k. tan^(-1) ( l tan x ) + C then (k, l ) =

If int (1)/(2 + cos x) dx = A tan^(-1) (B. tan""(x)/(2) ) + c then (A, B) =

int 1/(1-tan^2x)dx

int (e^(x) (x^(2) tan^(-1) x + tan^(-1) x + 1))/( x^(2) + 1) dx is

int frac{1}{x^2 + 4x + 8} dx =............... A) tan^(-1) (frac{x+2}{2}) + c B) tan^(-1) (x+2) + c C) (1/4) tan^(-1) (x+2) + c D) (1/2) tan^(-1) (frac{x+2}{2}) + c

int 1/((1+x^2)tan^(-1)x)dx

If int(1)/((x^2+1)(x^2+4))dx=a tan^(-1). x+b tan^(-1).(x)/(2)+c , then :