Home
Class 11
MATHS
("lim")(xvecoo)[(e/(1-e))(1/e-x/(1+x))]^...

`("lim")_(xvecoo)[(e/(1-e))(1/e-x/(1+x))]^xi s` `e^((1-e))` (b) `e^(((1-e)/e))` (c) `e^((e/(1-e)))` (d) `e^(((1+e)/e))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is

lim_(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is :

lim_(x->e) (lnx-1)/(x-e)

("lim")_(xrarroo)(1/e-x/(1+x))^x is equal to (a) e/(1-e) (b) 0 (c) e/(e^(1-e)) (d) does not exist

("lim")_(xrarroo)(1/e-x/(1+x))^x is equal to (a) e/(1-e) (b) 0 (c) e/(e^(1-e)) (d) does not exist

lim_(x->oo)(1/e-x/(1+x))^x is equal to (a) e/(1-e) (b) 0 (c) e/(e^(1-e)) (d) does not exist

lim_(x->oo)(1/e-x/(1+x))^x is equal to (a) e/(1-e) (b) 0 (c) e/(e^(1-e)) (d) does not exist

int(1)/(1+e^(x))dx= (a) log(1+e^(x)) (b) log((1+e^(x))/(e^(x))) (c) log(1+e^(-x)) (d) -log(e^(-x)+1)

(lim_(x rarr oo)((1)/(e)-(x)/(1+x))^(x) is equal to (a)(e)/(1-e)(b)0(c)(e)/(e^(1-e))(d) does not exist

(d)/(dx){sin^(-1)(e^(x))} is equal to (a) e^(x)sin^(-1)(e^(x)) (b) (e^(x))/(sqrt(1-e^(2x))) (c) (e^(x))/(1-e^(x)) (d) e^(x)cos^(-1)x]]