Home
Class 11
MATHS
[(2x+1)!quad (x-1)!=(3)/(5)],[(x+2)!]...

[(2x+1)!quad (x-1)!=(3)/(5)],[(x+2)!]

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve ((2x+1)!)/((x+2)!)xx((x-1)!)/((2x-1)!)=(3)/(5)(x in N)

(3x-2)/(5x-1)=(3x+1)/(5x+2)

(x+1)/(2)+(x-1)/(3)=(5)/(12)(x-2)

Define functions f,g:R rarr R,f(x)=3x-1+|2x+1| and g(x)=(1)/(5)(3x+5-|2x+5|) then-

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

Check whether the following are quadratic equation (i) (x+1)^2=2(x-3) (ii) x^2-2x=(-2)(3-x) (iii) (x-2)(x+1)=(x-1)(x+3) (iv) (x-3)(2x+1)=x(x+5) (v) (2x-1)(x-3)=(x+5)(x-1) (vi) x^2+3x+1=(x-2)^2 (vii) (x+2)^3=2x(x^2-1) (viii) x^3-4x^2 – x + 1 = (x – 2)^3

Check whether the following are quadratic equation (i) (x+1)^2=2(x-3) (ii) x^2-2x=(-2)(3-x) (iii) (x-2)(x+1)=(x-1)(x+3) (iv) (x-3)(2x+1)=x(x+5) (v) (2x-1)(x-3)=(x+5)(x-1) (vi) x^2+3x+1=(x-2)^2 (vii) (x+2)^3=2x(x^2-1) (viii) x^3-– 4x^2 – x + 1 = (x – 2)^3

((2x-1)/((x-1)(2x+3))=(1)/(5(x-1))+(k)/(5(2x+3))rArr k=

(2x-1)/((x-1)(2x+3))=1/(5(x-1))-k/(5(2x+3)) , then k =

Obtain the differential coefficient of the following : (i) (x-1) (2x+5) (ii) (9x^(3)-8x+7)(3x^(2)+5) (iii) 1/(2x+1) (iv) (3x+4)/(4x+5) (v) (x^(2))/(x^(3)+1)