Home
Class 11
MATHS
(i)a(cos B+cos C)=2(b+c)sin^(2)(A)/(2)...

(i)a(cos B+cos C)=2(b+c)sin^(2)(A)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

In a Delta ABC, prove that a ( cos B + cos C) = 2 (b + c) sin^(2)""(A)/(2)

In any triangle ABC, prove that : a (cos B + cos C) = 2 (b +c) sin^2 frac (A)(2) .

cos A + cos B + cos C = 1 + 4sin ((A) / (2)) sin ((B) / (2)) sin ((C) / (2))

In a triangle ABC if (sin2A+sin2B+sin2C)/(cos A+cos B+cos C-1)=((lambda)/(2))cos((A)/(2))cos((B)/(2))cos((C)/(2)) then lambda equals

If A+B+C=pi then prove that cos A+cos B+cos C=1+4sin((A)/(2))*sin((B)/(2))*sin((C)/(2))

If : A+B+C= pi "then" : 1 - sin^(2)""(A)/(2) - sin^(2)""(B)/(2)+ sin^(2)""(C)/(2)= A) 2cos""(A)/(2) * cos sin ^(2)""(B)/(2) + sin^(2)""(C)/(2) B) 2 cos ""(B)/(2)* cos ""(B)/(2) * sin""(C)/(2) C) 2 cos ""(C)/(2)* cos ""(A)/(2) * sin""(B)/(2) D) 2 cos ""(A)/(2)* cos ""(B)/(2) * sin""(C)/(2)

Prove that : (sin 2A+sin 2B + sin 2C)/(cos A + cos B + cos C-1) = 8 cos(A/2) cos( B/2) cos( C/2)

Prove that : (sin 2A+sin 2B + sin 2C)/(cos A + cos B + cos C-1) = 8 cos(A/2) cos( B/2) cos( C/2)