Home
Class 12
PHYSICS
Find the potential difference between po...

Find the potential difference between points A and B in an electric field
`vec(E ) = (2hat(i) + 3hat(j) + 4hat(k)) NC^(-1)`
where `vec(r_(A)) = (hat(i) -2hat(j) + hat(k))m and vec(r_(B)) = (2hat(i) + hat(j) - 2hat(k))m`

Text Solution

AI Generated Solution

To find the potential difference \( V_{AB} \) between points A and B in an electric field, we can use the formula: \[ V_{AB} = -\int_{A}^{B} \vec{E} \cdot d\vec{l} \] ### Step 1: Identify the electric field and position vectors Given: ...
Promotional Banner

Topper's Solved these Questions

  • ELECTROSTATIC POTENTIAL AND CAPACITANCE

    NARAYNA|Exercise Evaluate yourself-1|5 Videos
  • ELECTROSTATIC POTENTIAL AND CAPACITANCE

    NARAYNA|Exercise Evaluate yourself-2|8 Videos
  • ELECTROMAGNETIC WAVES

    NARAYNA|Exercise EXERCISE -4|15 Videos
  • ELECTROSTATICS AND GAUSS LAW

    NARAYNA|Exercise Intergers type question|11 Videos

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

Find the sum of the vectors vec(a)=(hat(i)-3hat(k)), vec(b)=(2hat(j)-hat(k)) and vec(c)=(2hat(i)-3hat(j)+2hat(k)) .

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

Find the scalar projection of vec(b) on vec(a) , when : vec(a)=2hat(i)+2hat(j)-hat(k) and vec(b)=2hat(i)-hat(j)-4hat(k)

Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).