Home
Class 12
PHYSICS
A glass sphere (mu =1.5) of radius 20 cm...

A glass sphere (`mu` =1.5) of radius 20 cm has small air bubble 4 cm below its centre. The sphere is viewed from outside and along vertical line through the bubble. The apparent depth of the bubble below the surface of sphere is (in cm)

A

13.33

B

26.67

C

15

D

30

Text Solution

AI Generated Solution

The correct Answer is:
To find the apparent depth of the air bubble below the surface of the glass sphere, we can use the formula that relates the refractive indices and distances in optics. Here’s a step-by-step solution: ### Step 1: Identify the parameters - Refractive index of air, \( \mu_2 = 1 \) - Refractive index of glass, \( \mu_1 = 1.5 \) - Radius of the glass sphere, \( R = 20 \, \text{cm} \) - Depth of the bubble from the center of the sphere, \( d = 4 \, \text{cm} \) ### Step 2: Calculate the object distance (U) The object distance \( U \) is measured from the surface of the sphere to the bubble. Since the bubble is 4 cm below the center of the sphere, we need to account for the radius of the sphere: \[ U = - (R - d) = - (20 \, \text{cm} - 4 \, \text{cm}) = - 16 \, \text{cm} \] ### Step 3: Use the lens maker's formula We use the formula for refraction at a spherical surface: \[ \frac{\mu_2}{V} - \frac{\mu_1}{U} = \frac{\mu_2 - \mu_1}{R} \] Substituting in the known values: \[ \frac{1}{V} - \frac{1.5}{-16} = \frac{1 - 1.5}{-20} \] ### Step 4: Simplify the equation Calculating the right side: \[ \frac{1 - 1.5}{-20} = \frac{-0.5}{-20} = \frac{0.5}{20} = \frac{1}{40} \] Now substituting back into the equation: \[ \frac{1}{V} + \frac{1.5}{16} = \frac{1}{40} \] ### Step 5: Find a common denominator The common denominator for the fractions is 80: \[ \frac{1}{V} + \frac{1.5 \times 5}{80} = \frac{2}{80} \] This simplifies to: \[ \frac{1}{V} + \frac{7.5}{80} = \frac{2}{80} \] ### Step 6: Solve for \( \frac{1}{V} \) Rearranging gives: \[ \frac{1}{V} = \frac{2}{80} - \frac{7.5}{80} = \frac{-5.5}{80} \] ### Step 7: Calculate \( V \) Taking the reciprocal: \[ V = \frac{80}{-5.5} = -\frac{80}{5.5} \approx -14.55 \, \text{cm} \] ### Step 8: Calculate the apparent depth The apparent depth of the bubble is given by the absolute value of \( V \): \[ \text{Apparent Depth} = |V| \approx 14.55 \, \text{cm} \] ### Final Result The apparent depth of the bubble below the surface of the sphere is approximately **14.55 cm**. ---

To find the apparent depth of the air bubble below the surface of the glass sphere, we can use the formula that relates the refractive indices and distances in optics. Here’s a step-by-step solution: ### Step 1: Identify the parameters - Refractive index of air, \( \mu_2 = 1 \) - Refractive index of glass, \( \mu_1 = 1.5 \) - Radius of the glass sphere, \( R = 20 \, \text{cm} \) - Depth of the bubble from the center of the sphere, \( d = 4 \, \text{cm} \) ...
Promotional Banner

Topper's Solved these Questions

  • RAY OPTICS AND OPTICAL INSTRAUMENTS

    NARAYNA|Exercise EXERCISE-2 (C.W)(REFRACTION THROUGH A PRISM )|8 Videos
  • RAY OPTICS AND OPTICAL INSTRAUMENTS

    NARAYNA|Exercise EXERCISE-2 (C.W)(DISPERSION BY A PRISM )|4 Videos
  • RAY OPTICS AND OPTICAL INSTRAUMENTS

    NARAYNA|Exercise EXERCISE-2 (C.W)(REFRACTION)|20 Videos
  • NUCLEI

    NARAYNA|Exercise ASSERTION & REASON|5 Videos
  • SEMI CONDUCTOR DEVICES

    NARAYNA|Exercise Level-II (H.W)|36 Videos

Similar Questions

Explore conceptually related problems

A glass sphere (mu=1.5) with a radius of 15.9 cm has a tiny air bubble 5 cm its centre.This sphere is viewed looking down along the extended radius containing the bubble.What is the apparent depth of the bubble below the sirface of the sphere ? 8.57 cm from top

A glass sphere of (mu=1.5) with a radius of 15.0 cm has a tiny air bubble 5 cm above its centre. The sphere is viewed looking down along the extended radius containing the bubble. What is the apparent depth of the bubble below the surface of the sphere?

There is small air bubble inside a glass sphere (mu=1.5) of radius 10 cm. The bubble is 4.0 cm below the surface and is viewed normally from the outside figure. Find the apparent depth of the bubble

Fig shows a small air bubble inside a glass sphere (mu = 1.5) of radius 10 cm. the bubble is 4.0 cm below the surface and is viewed normally from the outside. Find the apparent depth of the bubble.

There is a small air bubble inside a glass sphere (mu=1.5) of radius 10 cm. The bubble is 4.0cm below the surface and is viewd normally from the outside. Find the apparent dipth of the bubble.

A glass sphere of radius 15 cm has a small bubble 6 cm from its centre. The bubble is viewed along a diameter of the sphere from the side on which it lies. How for from the surface will it appear to be if the refractive index of glass is 1.5 ?

A glass sphere of radius 5 cm has a small bubble at a distance 2 cm from its centre. The bubble is viewed along a Diameter of the sphere from the side on which it lies.How far from the surface will it appear.Refractive index of glass is 1.5 2.5 cm behind the surface

A spherical solid glass paper weight of diameter 6 cm has a small air bubble at a distance of 1.5 cm from the centre. If the air bubble be viewed from the side to which it is nearest along the line joining the bubble and the centre, find where will it appear.

NARAYNA-RAY OPTICS AND OPTICAL INSTRAUMENTS -EXERCISE-2 (C.W)(REFRACTION THROUGH SPHERICAL SURFACES )
  1. A denser medium of refractive index 1.5 has a concave surface of radiu...

    Text Solution

    |

  2. The human eye can be regarded as a single spherical refractive surface...

    Text Solution

    |

  3. A glass sphere (mu =1.5) of radius 20 cm has small air bubble 4 cm bel...

    Text Solution

    |

  4. A spherical surface of radius R separates two media of refractive indi...

    Text Solution

    |

  5. The sun subtends an angle of (1//2)^(@) on earth. The image of sun is ...

    Text Solution

    |

  6. An object is placed first at infinity and then at 20 cm from the objec...

    Text Solution

    |

  7. The image of a square hole in a screen illuminated by light is obtaine...

    Text Solution

    |

  8. A plano-convex lens of focal length 30 cm has its plane surface silver...

    Text Solution

    |

  9. The graph shows the variation of magnifictaion y'-. m produced by conv...

    Text Solution

    |

  10. A convex lens of focal length f is placed somewhere in between an obje...

    Text Solution

    |

  11. The distance between an object and the screen is 100cm. A lens produce...

    Text Solution

    |

  12. Three lenses in contact have a combined focal length of 12 cm. When th...

    Text Solution

    |

  13. Arrange the following combinations in the increasing order of focal le...

    Text Solution

    |

  14. A thin converging lens forms the real image of certain real object mag...

    Text Solution

    |

  15. When an object is at distances x and y from a lens, a real image and a...

    Text Solution

    |

  16. Two thin convex lenses of focal lengths f(1) and f(2) are arranged coa...

    Text Solution

    |

  17. A plano-convex lens, when silvered at its plane surface is equivalent ...

    Text Solution

    |

  18. A thin equiconvex lens has focal length 10 cm and refractive index 1.5...

    Text Solution

    |

  19. Four lenses are made from the same type of glass, the radius of curvat...

    Text Solution

    |

  20. 4 A thin liquid convex lens is formed in glass. Refractive index of li...

    Text Solution

    |