Home
Class 12
PHYSICS
Given ({:(56),(26):}Fe)= 55. 934939u an...

Given `({:(56),(26):}Fe)= 55. 934939u and m`
`({:(209),(83):}Bi)= 208. 980388u8`
`m _("proton") =1.007825u, m _("nutron")=1.008665u`
Then, BE per nucleon of Fe and Bi are respectively

A

`9. 790 MeV, 7.848MeV`

B

`7.75 MeV, 6.84 MeV`

C

`7.5 MeV, 6.5 MeV`

D

data insufficient

Text Solution

AI Generated Solution

The correct Answer is:
To find the binding energy per nucleon for Iron (Fe) and Bismuth (Bi), we will follow these steps: ### Step 1: Calculate the Number of Protons and Neutrons For Iron (Fe): - Atomic number (Z) = 26 (number of protons) - Atomic mass (A) = 56 - Number of neutrons (N) = A - Z = 56 - 26 = 30 For Bismuth (Bi): - Atomic number (Z) = 83 (number of protons) - Atomic mass (A) = 209 - Number of neutrons (N) = A - Z = 209 - 83 = 126 ### Step 2: Calculate the Total Mass of Protons and Neutrons For Iron (Fe): - Mass of protons = Number of protons × Mass of one proton = 26 × 1.007825 u = 26.20345 u - Mass of neutrons = Number of neutrons × Mass of one neutron = 30 × 1.008665 u = 30.25995 u - Total mass = Mass of protons + Mass of neutrons = 26.20345 u + 30.25995 u = 56.4634 u For Bismuth (Bi): - Mass of protons = Number of protons × Mass of one proton = 83 × 1.007825 u = 83.64 u - Mass of neutrons = Number of neutrons × Mass of one neutron = 126 × 1.008665 u = 127.09 u - Total mass = Mass of protons + Mass of neutrons = 83.64 u + 127.09 u = 210.73179 u ### Step 3: Calculate the Mass Defect For Iron (Fe): - Mass defect (Δm) = Total mass - Actual mass = 56.4634 u - 55.934939 u = 0.528461 u For Bismuth (Bi): - Mass defect (Δm) = Total mass - Actual mass = 210.73179 u - 208.980388 u = 1.75179 u ### Step 4: Calculate the Binding Energy The binding energy (BE) can be calculated using the formula: \[ \text{BE} = \Delta m \times 931.5 \text{ MeV} \] For Iron (Fe): \[ \text{BE} = 0.528461 \times 931.5 \text{ MeV} = 492.26 \text{ MeV} \] For Bismuth (Bi): \[ \text{BE} = 1.75179 \times 931.5 \text{ MeV} = 1631.7 \text{ MeV} \] ### Step 5: Calculate the Binding Energy per Nucleon For Iron (Fe): \[ \text{BE per nucleon} = \frac{\text{BE}}{A} = \frac{492.26 \text{ MeV}}{56} \approx 8.79 \text{ MeV} \] For Bismuth (Bi): \[ \text{BE per nucleon} = \frac{\text{BE}}{A} = \frac{1631.7 \text{ MeV}}{209} \approx 7.8 \text{ MeV} \] ### Final Answer The binding energy per nucleon for Iron (Fe) is approximately **8.79 MeV** and for Bismuth (Bi) is approximately **7.8 MeV**. ---
Promotional Banner

Topper's Solved these Questions

  • NUCLEI

    NARAYNA|Exercise EVALUATE YOURSELF-2|9 Videos
  • NUCLEI

    NARAYNA|Exercise EVALUATE YOURSELF-3|7 Videos
  • NUCLEI

    NARAYNA|Exercise ASSERTION & REASON|5 Videos
  • NUCLEAR PHYSICS

    NARAYNA|Exercise LEVEL-II-(H.W)|9 Videos
  • RAY OPTICS AND OPTICAL INSTRAUMENTS

    NARAYNA|Exercise EXERCISE- 4 One or more than one correct answer type|13 Videos

Similar Questions

Explore conceptually related problems

Calculate binding energy per nucleon of ._83Bi^(209) . Given that m (._83Bi^(209))=208.980388am u m("neutron") = 1.008665 am u m ("proton") = 1.007825 am u

Calculate binding energy per nucleon of ._(83)Bi^(209) . Given : m(._(83)Bi^(209))=208.980388 " amu", m("neutron")=1.008665 " amu",m("proton") =1.007825 " amu" .

Find the binding energy of ._(20)^(56)Fe . Atomic mass of .^(56)Fe is 55.934939 amu. Mass of a proton is 1.007825 amu and that of neutron=1.008665 amu.

Calculate the binding energy per nucleon of ._(20)^(40)Ca . Given that mass of ._(20)^(40)Ca nucleus = 39.962589 u , mass of proton = 1.007825 u . Mass of Neutron = 1.008665 u and 1 u is equivalent to 931 MeV .

The binding energy of ._(10)Ne^(20) is 160.6 MeV. Find its atomic mass. Take mass of proton =1.007825 u and mass of neutron =1.008665 u.

If the mass of proton= 1.008 a.m.u. and mass of neutron=1.009a.m.u. then binding energy per nucleon for ._(4)Be^9 (mass=9.012 amu) would be-

The binding energy per nucleon of ""_(7)N^(14) nucleus is: (Mass of ""_(7)N^(14) = 14.00307 u ) mass of proton = 1.007825 u mass of neutron = 1.008665 u

Determine the binding energy of ""_(3)Li^(7) if its mass is 7.00 amu Use 1 amu = 931 MeVc^(2) (m_(p) = 1.007825 u, m_(n) = 1.008665 u) .

Given, mass of a neutron =1 .00866u, mass of a proton = 1.00727u, mass of {:(16), (8):}O = 15. 99053u. Then, the energy required to separate {:(16),(8):}O into its constituents is