Home
Class 12
MATHS
" If "bar(c)=3bar(a)-2vec b," then prove...

" If "bar(c)=3bar(a)-2vec b," then prove that "[[bar(a),bar(b)],[c]]=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(c)=3bar(a)-2bar(b) , then prove that [bar(a)bar(b)bar(c)]=0 .

If bar(c) = 3 bar(a) - 2 bar(b) then prove that [(bar(a),bar(b),bar(c))] = 0

If bar(a)+bar(b)+bar(c)=bar(0) then prove that bar(a)xxbar(b)=bar(b)xxbar(c)=bar(c)xxbar(a) .

if bar(a),bar(b),bar(c) are any three vectors then prove that [bar(a),bar(b)+bar(c),bar(a)+bar(b)+bar(c)]=0

Let bar(a) be a unit vector bar(b)=2bar(i)+bar(j)-bar(k) and bar(c)=bar(i)+3bar(k) then maximum value of [[bar(a),bar(b),bar(c)]] is

i) bar(a), bar(b), bar(c) are pairwise non zero and non collinear vectors. If bar(a)+bar(b) is collinear with bar(c) and bar(b)+bar(c) is collinear with bar(a) then find the vector bar(a)+bar(b)+bar(c) . ii) If bar(a)+bar(b)+bar(c)=alphabar(d), bar(b)+bar(c)+bar(d)=betabar(a) and bar(a), bar(b), bar(c) are non coplanar vectors, then show that bar(a)+bar(b)+bar(c)+bar(d)=bar(0) .

If bar(a),bar(b),bar(c) are coplanar then the value of |[bar(a),bar(b),bar(c)],[bar(a)*bar(a),bar(a)*bar(b),bar(a)*bar(c)],[bar(b).bar(a),bar(b)*bar(b),bar(b)*bar(c)]|=

Let bar(a) be a unit vector bar(b)=2bar(i)+bar(j)-bar(k) and bar(c)=bar(i)+3bar(k) then maximum value of [bar(a)bar(b)bar(c)] is

If bar(a),bar(b)andbar(c) are any three vectors, prove that (1) [bar(a)+bar(b) bar(b)+bar(c) bar(c)+bar(a)]=2[bar(a)bar(b)bar(c)] (2) [bar(a) bar(b)+bar(c) bar(a)+bar(b)+bar(c)]=0

If bar(a),bar(b),bar(c) are any three vectors, prove that (1) [bar(a)+bar(b)" "bar(a)+bar(c)" "bar(b)]=[bar(a)" "bar(c)" "bar(b)] (2) [bar(a)-bar(b)" "bar(b)-bar(c)" "bar(c)-bar(a)]=0 .