Home
Class 12
MATHS
Let vec a= hat i+ hat j+ hat k , vec b=...

Let ` vec a= hat i+ hat j+ hat k , vec b= hat i` and ` hat c=c_1 hat i+c_2 hat j+c_3 hat k` . Then, (1)If `c_1=1` and `c_2=2,` find `c_3` which makes ` vec a , vec b` and ` vec c` coplanar. (2)If `c_2=-1` and `c_3=1,` show that no value of `c_1` can make ` vec a , vec b` and ` vec c` coplanar.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a= hat i+ hat j+ hat k and vec b = hat i and vec c=c_1 hat i + c_2 hat j +c_3 hat k . Then (a) if c_1 = 1 and c_2 = 2 , find c_3 , which makes vec a,vec b and vec c coplanar.

Let vec a = hat i + hat j + hat k , vec b = hat i and vec c = c_(1)hat i + c_(2)hat j + c_(3)hat k . If c_(1) = 1 and c_(2) = 2 , find c_(3) which makes vec a, vec b and vec c coplanar.

Let vec a=hat i+hat j+hat k and vec b=hat i and vec c=c_1 hat i + hat c_2 j +c_3 hat k Then (a) if c_1 = 1 and c_2=2 , find c_3 which makes vec a , vec b, vec c coplanar (b) if c_2 = -1 and c_3= 1 , show that no value of c_1 can makes vec a , vec b, vec c coplanar.

Let vec a= hat i+ hat j+ hat k and vec b = hat i and vec c=c_1 hat i + c_2 hat j +c_3 hat k . Then if c_2 =-1 and c_3 = 1 , show that no value of c_1 , can makes vec a,vec b and vec c coplanar.

Let vec(a) = hat (i) + hat (j) + hat (k) , vec (b) = hat (i) and vec (c) = c_(1)hat (i) + c_(2)hat (j)+ c_(3)hat(k) then , if c_(1)=1 and c_(2) = 2 , find c_(3) which makes vec(a),vec(b) and vec(c ) coplanar .

vec a=hat i+hat j+hat k and vec b=i and vec c=c_(1)hat i+hat c_(2)j+c_(3)hat k Then (a) if c_(1)=1 and c_(2)=2, find c_(3) which makes vec a,vec b,vec c coplanar (b) if c_(2)=-1 and c_(3)=1, show that no value of c_(3) can makes vec a,vec b,vec c coplanar.

Let vec a = hat i + hat j + hat k , vec b = hat i and vec c = c_(1)hat i + c_(2)hat j +c_(3)hat k . Then if c_(2) = -1 and c_(3) = 1 , show that no value of c_(1) can make vec a, vec b and vec c coplanar.

If vec a=a_1 hat i+a_2 hat j+a_3 hat k ,\ vec b=b_1 hat i+b_2 hat j+b_3 hat k and vec c=c_1 hat i+c_2 hat j+c_3 hat k , then verify that vec axx( vec b+ vec c)= vec axx vec b+ vec axx vec c

Let vec(a)=hat(i)+hat(j)+hat(k),vec(b)=hat(i)and vec(c)=c_(1)hat(i)+c_(2)hat(j)+c_(3)hat(k). " If "c_(1)=1 and c_(2)=2" find "c_(3)" such that "vec(a), vec(b) and vec(c)" are coplanar. "