Home
Class 12
MATHS
If A is an invertible matrix, tehn (a d ...

If `A` is an invertible matrix, tehn `(a d jdotA)^(-1)` is equal to `a d jdot(A^(-1))` b. `A/(d e tdotA)` c. `A` d. `(detA)A`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is an invertible matrix then det(A^-1) is equal to (A) 1 (B) 1/|A| (C) |A| (D) none of these

If A is an invertible matrix of order 2 then det (A^(-1)) is equal to (a) det (A) (b) (1)/(det(A))(c)1 (d) 0

If matrix A=[(a,b),(c,d)] , then |A|^(-1) is equal to

If [[a,b],[c,d]] is invertible,then

If A is an orthogonal matrix then A^(-1) equals A^(T) b.A c.A^(2) d.none of these

If A= [[a,b],[c,d]] is invertible,then A^(-1)

If A and B are invertible matrices, which of the following statement is not correct. a d j\ A=|A|A^(-1) (b) det(A^(-1))=(detA)^(-1) (c) (A+B)^(-1)=A^(-1)+B^(-1) (d) (A B)^(-1)=B^(-1)A^(-1)

A square matrix A is invertible iff det (A) is equal to (A) -1 (B) 0 (C) 1 (D) none of these

If A is an invertible matrix, then which of the following is not true (A^2)^-1=(A^(-1))^2 (b) |A^(-1)|=|A|^(-1) (c) (A^T)^(-1)=(A^(-1))^T (d) |A|!=0

If A is a 3xx3 skew-symmetric matrix,then trace of A is equal to -1 b.1 c.|A| d.none of these