Home
Class 12
MATHS
For x >0,l e tf(x)=int1^x(logt)/(1+t)dtd...

For `x >0,l e tf(x)=int_1^x(logt)/(1+t)dtdot` Find the function `f(x)+f(1/x)` and find the value of `f(e)+f(1/e)dot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

For x>0, let f(x)=int_(1)^(x)(log_(t)t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and show that f(e)+f((1)/(e))=(1)/(2)

For x>0, let f(x)=int_(1)^(x)(log_(e)t)/(1+t)dt find the function f(x)+f((1)/(x)) and show that f(e)+f((1)/(e))=(1)/(2)

f(x)=log_(e)x, find value of f(1)

f(x)=int_(1)^(x)(tan^(-1)(t))/(t)dt,x in R^(+), then find the value of f(e^(2))-f((1)/(e^(2)))

Let f(x)=e^(x)+2x+1 then find the value of int_(2)^(e+3)f^(-1)(x)dx

f(x)=int_1^x lnt/(1+t) dt , f(e)+f(1/e)=

If f(x)=int_(1)^(x)(logt)(1+t+t^(2))dt AAxge1 , then prove that f(x)=f(1/x) .

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Q.if the function f(x)=x^(3)+(e^(x))/(2) and g(x)=f^(-1)(x), then find the value of g'(1)

If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x) , then the value of g'(1) is