Home
Class 12
MATHS
Solve: (dy)/(dx)+y*f'(x)=f(x)*f'(x), whe...

Solve: `(dy)/(dx)+y*f'(x)=f(x)*f'(x)`, where `f (x)` is a given function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (dy)/(dx) = yf^(')(x) = f(x) f^(')(x) , where f(x) is a given integrable function of x .

Solve (dy)/(dx) = yf^(')(x) = f(x) f^(')(x) , where f(x) is a given integrable function of x .

Solve (dy)/(dx) + yf^(')(x) = f(x) f^(')(x) , where f(x) is a given integrable function of x .

Solve: dy/dx=(y f\'(x)-y^2)/f(x) , where f(x) is a given function of x

dy/dx+y f\'(x)-f(x)f\'(x)=0

Solve: (dy)/(dx) = (yf^(')(x)-y^(2))/(f(x))

Solve: (dy)/(dx) = (yf^(')(x)-y^(2))/(f(x))

Solve: (dy)/(dx) = (yf^(')(x)-y^(2))/(f(x))

A function f satisfies the condition f(x)=f'(x)+f''(x)+f'''(x)+…, where f(x) is a differentiable function indefinitely and dash denotes the order the derivative. If f(0) = 1, then f(x) is

A function f satisfies the condition f(x)=f'(x)+f''(x)+f''(x)+…, where f(x) is a differentiable function indefinitely and dash denotes the order the derivative. If f(0) = 1, then f(x) is