Home
Class 12
MATHS
Let f:[-1,2]->[0,oo) be a continuous fu...

Let `f:[-1,2]->[0,oo)` be a continuous function such that `f(x)=f(1-x)fora l lx in [-1,2]dot` Let `R_1=int_(-1)^2xf(x)dx ,` and `R_2` be the area of the region bounded by `y=f(x),x=-1,x=2,` and the x-axis . Then (a)`R_1=2R_2` (b) `R_1=3R_2` (c)`2R_1` (d) `3R_1=R_2`

A

`R_(1)=2R_(2)`

B

`R_(1)=3R_(2)`

C

`2R_(1)=R_(2)`

D

`3R_(1)=R_(2)`

Text Solution

Verified by Experts

`R_(1)=int_(-1)^(2)xf(x)dx=int_(-1)^(2)(2-1-x)f(2-1-x)dx`
`=int_(-1)^(2)(1-x)f(1-x)dx`
`=int_(-1)^(2)(1-x)f(x)dx`
Hence `2R_(1)=int_(-1)^(2)f(x)dx=R_(2)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f : [-1, 2]to [0, oo) be a continuous function such that f(x)=f(1-x), AA x in [-1, 2] . If R_(1)=int_(-1)^(2)xf(x)dx and R_(2) are the area of the region bounded by y=f(x), x=-1, x=2 and the X-axis. Then :

Let f:[-2,3]rarr[0,oo) be a continuous function such that f(1-x)=f(x) for all x in[-2,3]. If R_(1) is the numerical value of the area of the region bounded by y=f(x),x-2,x=3 and the axis of x and R_(2)=int_(-2)^(3)xf(x)dx, then

Let f:R to R be continuous function such that f(x)=f(2x) for all x in R . If f(t)=3, then the value of int_(-1)^(1) f(f(x))dx , is

let f:R rarr R be a continuous function defined by f(x)=(1)/(e^(x)+2e^(-x))

Let f:R in R be a continuous function such that f(1)=2. If lim_(x to 1) int-(2)^(f(x)) (2t)/(x-1)dt=4 , then the value of f'(1) is

Let f(x) be a function defined on R satisfying f(x)=f(1x) for all x in R. Then int_(-(1)/(2))^((1)/(2))f(x+(1)/(2))sin xdx equals

Let f: [1,3] to R be a continuous function that is differentiable in (1,3) and f '(x) = |f(x) |^(2) + 4 for all x in (1,3). Then,

Let f : R to R be continuous function such that f (x) + f (x+1) = 2, for all x in R. If I _(1) int_(0) ^(8) f (x) dx and I _(2) = int _(-1) ^(3) f (x) dx, then the value of I _(2) +2 I _(2) is equal to "________"

Let f :R to R be a function such that f(x) = x^3 + x^2 f' (0) + xf'' (2) , x in R Then f(1) equals: