Home
Class 12
MATHS
y=e^x; (d^2x)/(dy^2) is...

`y=e^x; (d^2x)/(dy^2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x+e^x, then (d^2x)/(dy^2) is (a) e^x (b) - e^x/((1+e^x)^3) (c) -e^x/((1+e^x)^2) (d) (-1)/((1+e^x)^3)

If y=x+e^x, then (d^2x)/(dy^2) is (a) e^x (b) - e^x/((1+e^x)^3) (c) -e^x/((1+e^x)^3) (d) (-1)/((1+e^x)^3)

If y=x+e^x, then (d^2x)/(dy^2) is (a) e^x (b) - e^x/((1+e^x)^3) (c) -e^x/((1+e^x)^3) (d) (-1)/((1+e^x)^3)

y=x+e^x , then (d^2x)/(dy^2) is equal to

If y=x+e^x , then (d^2x)/(dy^2) is equal to

If y=x+e^(x), then (d^(2)x)/(dy^(2)) is equal to

y=sinx+e^(x) then (d^(2)x)/(dy^(2)) is:

y=sinx+e^(x) then (d^(2)x)/(dy^(2)) is:

If y=x+e^(x), then (d^(2)x)/(dy^(2)) is (a) e^(x)(b)-(e^(x))/((1+e^(x))^(3))(c)-(e^(x))/((1+e^(x))^(3))(d)(-1)/((1+e^(x))^(3))