Home
Class 12
MATHS
(1+2^2/(2!)+2^4/(3!)+2^6/(4!)+....)/(1+1...

`(1+2^2/(2!)+2^4/(3!)+2^6/(4!)+....)/(1+1/(2!)+2/(3!)+2^2/(4!)+...)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1+1/(2!)+2/(3!)+(2^(2))/(4!)+(2^(2))/(5!)+...)/(1 + 1/(2!)+1/(4!)+1/(6!)+...) is equal to

If 1^(2)+(2^(2))/(2!)+(3^(2))/(3!)+(4^(2))/(4!)+....=ae,(1^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+...=be,(1)/(2!)+(1+2)/(3!)+(1+2+3)/(4!)+...=ce then the descending order of a,b,c is

The sum of series (601)/(50)((1)/(1+1^(2)+1^(4))+(2)/(1+2^(2)+2^(4))+(3)/(1+3^(2)+3^(4))+...+(24)/(1+(24)^(2)+(24)^(4)))