Home
Class 12
MATHS
The following integral int(pi/4)^(pi/2)(...

The following integral `int_(pi/4)^(pi/2)(2cos e cx)^(17)dx` is equal to `(a)int_0^("log"(1+sqrt(2)))2(e^u+e^(-u))^(16)d u` `(b)int_0^("log"(1+sqrt(2)))2(e^u+e^(-u))^(17)d u` `(c)int_0^("log"(1+sqrt(2)))2(e^u-e^(-u))^(17)d u` `(d)int_0^("log"(1+sqrt(2)))2(e^u-e^(-u))^(16)d u`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(pi//6)^(pi//3)1/(sin2x)dx\ is equal to (log)_e3 b. (log)_"e"sqrt(3) c. 1/2log(-1) d. log(-1)

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int sin^(-1)((2x)/(1+x^(2)))dx is e q u a lto

int(1)/(sqrt(u))du

If u_(n)=int_(0)^((pi)/(2))x^(n)sin xdx then u_(10)+90u_(8) is equal to

If the value of the integral int_(1)^(2)e^(x^(2))dx is alpha, then the value of int_(e)^(e^(4))sqrt(ln x)dx is:

int_(0)^(sqrt("log"(pi)/2))cos(e^(x^(2)))2xe^(x^(2))dx=

Given int_(1)^(2) e^(x^(2))dx=a , the value of int_(e )^(e^(4)) sqrt(log_(e )x)dx , is

int (du) / (u sqrt (u ^ (2) -1))